Abstract:
A driving circuit includes a plurality of reference voltage lines and a digital to analog converter. The reference voltage lines are configured for respectively transmitting different grayscale reference voltages, in which the grayscale reference voltages are divided into at least two groups, and the wire diameter/wire width of at least one reference voltage line among the reference voltage lines of a first voltage group among the at least two groups is different from the wire diameters/wire widths of the reference voltage lines of a second voltage group among the at least two groups. The digital to analog converter is coupled to the reference voltage lines to receive the grayscale reference voltages and is for converting a digital signal into a grayscale voltage according to the grayscale reference voltages.
Abstract:
A display driver and a charge recycling method are provided. The display driver includes a charging and discharging circuit and a control circuit. A first terminal of the charging and discharging circuit is coupled to at least one of the scan lines, and a second terminal of the charging and discharging circuit is coupled to at least one of the data lines. The control circuit is coupled to a first control terminal and a second control terminal of the charging and discharging circuit. The charging and discharging circuit receives a first current generated by discharging the at least one of the scan lines to charge the capacitor based on a first control signal. The charging and discharging circuit discharges the capacitor to generate a second current for charging the at least one of the data lines based on a second control signal.
Abstract:
A display driver and a charge recycling method are provided. The display driver includes a charging and discharging circuit and a control circuit. A first terminal of the charging and discharging circuit is coupled to at least one of the scan lines, and a second terminal of the charging and discharging circuit is coupled to at least one of the data lines. The control circuit is coupled to a first control terminal and a second control terminal of the charging and discharging circuit. The charging and discharging circuit receives a first current generated by discharging the at least one of the scan lines to charge the capacitor based on a first control signal. The charging and discharging circuit discharges the capacitor to generate a second current for charging the at least one of the data lines based on a second control signal.
Abstract:
The disclosure provides a control method of a display driver. The control method includes receiving address information and defining an IC address according to the address information. The IC address includes n bits representing k zones, and n and k are positive integers. The control method further includes receiving the IC address, a black frame data signal and a pulse-width modulation (PWM) signal, and turning on or off the plurality of LEDs in the corresponding zone according to toggle of bit in the black frame data signal. Each bit in the black frame data signal indicates that a plurality of LEDs in a zone among the k zones are turned on or off.
Abstract:
The disclosure provides a control method of a display driver. The control method includes receiving address information and defining an IC address according to the address information. The IC address includes n bits representing k zones, and n and k are positive integers. The control method further includes receiving the IC address, a black frame data signal and a pulse-width modulation (PWM) signal, and turning on or off the plurality of LEDs in the corresponding zone according to toggle of bit in the black frame data signal. Each bit in the black frame data signal indicates that a plurality of LEDs in a zone among the k zones are turned on or off.
Abstract:
The disclosure provides a digital-to-analog conversion device and an operation method thereof. The digital-to-analog conversion device includes a digital-to-analog conversion circuit and a slew rate enhancement circuit. The digital-to-analog conversion circuit is configured to convert a digital code into an analog voltage. An output terminal of the digital-to-analog conversion circuit outputs the analog voltage to a load circuit. A control terminal of the slew rate enhancement circuit is coupled to the digital-to-analog conversion circuit to receive a control voltage following the analog voltage. The slew rate enhancement circuit is coupled to the output terminal of the digital-to-analog conversion circuit. The slew rate enhancement circuit enhances the slew rate at the output terminal of the digital-to-analog conversion circuit based on the control voltage.
Abstract:
A differential input circuit and a driving circuit including the same are provided. The differential input circuit transforms an analog voltage signal corresponding to a sensing line on an OLED panel to a pair of differential input signals being output to a gain amplifier. The differential input circuit includes a sampling circuit and a scaling circuit. The sampling circuit receives the analog voltage signal and a reference voltage through a first scaling path and a second scaling path, respectively. The scaling circuit includes a first scaling path and a second scaling path. The first scaling path and the second scaling path collectively generate the pair of differential input signals, based on a first shift voltage, a first scaled voltage, a second shift voltage, and a second scaled voltage. The first shift voltage is less than the second shift voltage.
Abstract:
A current integrator includes an operational amplifier, an integration capacitor and an offset cancelation capacitor. The operational amplifier includes a first input stage and a second input stage. The first input stage is coupled to an input terminal of the current integrator. The integration capacitor is coupled between the first input stage of the operational amplifier and an output terminal of the current integrator. The offset cancelation capacitor is coupled to the second input stage of the operational amplifier.
Abstract:
A display apparatus and a driving method of the same are provided. The display apparatus includes a display panel, a gate driver circuit, and a source driver circuit. During a functional sub-period of a frame period, the gate driver circuit simultaneously drives a plurality of gate lines, and the source driver circuit drives a plurality of source lines, so as to perform a function on a plurality of pixels connected to the gate lines. In a scan sub-period of the frame period, the gate driver circuit drives the gate lines according to a scan sequence, and the source driver circuit correspondingly drives the source lines according to the scan sequence of the gate driver circuit in the first scan sub-period, so as to display an image.
Abstract:
An operational amplifier circuit configured to drive a load is provided. The operational amplifier circuit includes an output stage module. The output stage module includes a detection circuit and an output stage circuit. The detection circuit is configured to detect a current output voltage and a previous output voltage based on a comparison result of a current input voltage and the current output voltage. The detection circuit enhances a charge capacity or a discharge capacity of the output stage circuit for the load based on a detection result. Furthermore, a method for enhancing the driving capacity of the operational amplifier circuit is also provided.