Abstract:
The present disclosure provides a method for recognizing an article using a multi-energy spectrum X-ray imaging system and a multi-energy spectrum X-ray imaging system. The method comprises: recognizing an application scenario and/or priori information of the article; selecting a parameter mode suitable for the article from a plurality of parameter modes stored in the multi-energy spectrum X-ray imaging system based on the recognized application scenario and/or priori information; and recognizing the article using the selected parameter mode, wherein the plurality of parameter modes are obtained by optimizing system parameters of the multi-energy spectrum X-ray imaging system under a specific condition using a training sample library for various articles.
Abstract:
An inspection method and system for inspecting whether there is any liquor in goods is provided. The method includes: acquiring a radiation image of goods being inspected; processing on the radiation image to obtain an ROI; inspecting on the ROI using a liquor goods inspection model to determine if the ROI of the radiation image contains liquor goods. The above solution performs liquor inspection on scanned images of goods, especially containers, so as to intelligently assist the image inspectors.
Abstract:
The present disclosure provides a method and a system for inspecting goods. The method comprises steps of: obtaining a transmission image of inspected goods; processing the transmission image to obtain a suspicious region; extracting local texture features of the suspicious region and classifying the local texture features of the suspicious region based on a pre-created model to obtain a classification result; extracting a contour line shape feature of the suspicious region and comparing the contour line shape feature with a pre-created standard template to obtain a comparison result; and determining that the suspicious region contains a high atomic number matter based on the classification result and the comparison result.
Abstract:
The present invention discloses darkroom type security inspection apparatus and method. An apparatus comprises a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing are communicated by fittings or connectors and comprises: a sampling assembly comprising a sample collecting unit and a conveyer unit configured to convey an object to be inspected into the sample collecting unit; a sample processing assembly configured to concentrate and analyze the sample; and, an inspecting assembly configured to inspect composition of the sample by means of a gas chromatographic-ion mobility spectrometer (GC-IMS) or a separated ion mobility spectrometer (IMS). The security inspection apparatus of the present invention can perform the sampling easy, rapidly and effectively and perform the inspection accurately and rapidly without destroying and unpacking an object to be inspected, and thus is suitable for requirements of on-site rapid inspection of forbidden items in the airport, customs and the likes.
Abstract:
Methods for extracting a shape feature of an object and security inspection methods and apparatuses. Use is made of CT's capability of obtaining a 3D structure. The shape of an object in an inspected luggage is used as a feature of a suspicious object in combination with a material property of the object. For example, a false alarm rate in detection of suspicious explosives may be reduced.
Abstract:
Disclosed are object detection method, display methods and apparatuses. The method includes obtaining slice data of inspected luggage in the CT system; generating 3D volume data of objects in the luggage from the slice data; for each object, determining a semantic description including at least a quantifier description of the object based on the 3D volume data; and upon reception of a user selection of an object, presenting the semantic description of the selected object while displaying a 3D image of the object. The above solutions can create a 3D model for objects in the inspected luggage in a relatively accurate manner, and thus provide better basis for subsequent shape feature extraction and security inspection, and reduce omission factor.
Abstract:
The present invention may perform fluoroscopic imaging simultaneously on the subjects in at least two channels using only one electron accelerator, at least two sets of X-ray beams and at least two sets of detector systems, through the design of the electron accelerator, the shielding and collimating device, the at least two detector arrays and various mechanical composite structures. The X-ray fluoroscopic imaging system according to the present invention may be designed in specific forms of a stationary type, an assembled type, a track mobile type or vehicular mobile type, etc., and has advantages such as simple structure, low cost, strong function, good image quality and the like.
Abstract:
There is provided a waveguide horn array, a method for forming the waveguide horn array, and an antenna system. The array includes a rectangular metal plate which is processed to have a cross section comprised of a plurality of rectangular holes arranged in the length direction of the rectangular metal plate, the lower part of each hole being formed as a rectangular waveguide, and the upper part of each hole being formed as a horn; and a groove extending in the direction along which the plurality of holes are arranged and having a predetermined depth, which is formed at two sides of the holes on the top surface of the rectangular metal plate. According to the embodiments, it is possible to maintain the good properties of the antenna in terms of bandwidth and directivity, while enhancing the isolation between the transmitting antenna and the receiving antenna in the system.
Abstract:
A raman spectroscopy method of measuring melamine contents in dairy products having different matrixes. The method includes: (a) establishing a database of characteristic curves of dairy products having different matrixes; (b) taking several copies of the dairy products having one certain unknown matrix and adding melamine standard solutions having different concentrations therein, to obtain a series of dairy product samples in which the relative concentrations of the melamine are known; (c) performing raman spectrum testing analysis and obtaining corresponding characteristic peak intensities to obtain a slope of the characteristic curve showing variation of the characteristic peak intensities with the relative concentrations of the melamine; (d) searching the database of step (a) using the slope of the characteristic curve of the dairy product samples to find a matching characteristic curve, and (e) calculating concentration of melamine in the dairy products by using the matched characteristic curve and the characteristic peak intensity.
Abstract:
A CT apparatus without a gantry. The CT apparatus includes a scanning passage; a stationary X-ray source arranged around the scanning passage and including a plurality of ray emission focal spots; and a plurality of stationary detector modules arranged around the scanning passage and disposed opposite the X-ray source. At least some of the plurality of detector modules may be arranged substantially in an L shape, a semicircular shape, a U shape, an arc shape, a parabolic shape, or a curve shape when viewed in a plane intersecting the scanning passage. The invention ensures that the stationary gantry type CT system has a small size, and a high data identification accuracy.