Abstract:
A method of producing a conversion element includes providing a substrate having a surface; forming a first mask structure above the surface, wherein the first mask structure has first webs and first openings arranged between the first webs and the first openings form cavities in which the surface of the substrate is accessible; arranging a second mask structure above the first mask structure, wherein the second mask structure has second webs and second openings arranged between the second webs, the first webs are at least partly covered by the second webs, and the cavities remain at least partly accessible through the second openings; spraying a material into the cavities through the second openings; removing the second mask structure; and removing the first mask structure.
Abstract:
A method of producing an optoelectronic component includes providing a substrate with an optoelectronic semiconductor chip arranged on a surface of the substrate; providing a mask having a lower layer and an upper layer, wherein the lower layer has a lower opening and the upper layer has an upper opening, which openings jointly form a continuous mask opening, and the lower opening has a larger area than the upper opening; arranging the mask above the surface of the substrate such that the lower layer faces the surface of the substrate and the mask opening is arranged above the optoelectronic semiconductor chip; spraying a layer onto the optoelectronic semiconductor chip through the mask opening; and removing the mask.
Abstract:
The invention relates to an optoelectronic semiconductor element that emits mixed-color radiation when in operation. The optoelectronic semiconductor component comprises an optoelectronic semiconductor chip, a conversion element that has a curvature, and a spacer element that is arranged between the optoelectronic semiconductor chip and conversion element. The spacer has a curved surface that faces the conversion element, with the conversion element being in direct contact with the curved surface.