Abstract:
A brake (26) for an elevator system (10) and method of using the brake (26) is disclosed. The brake (26) may comprise first and second brake linings (38) configured to be frictionally engageable with a rail (14) of the elevator system (10), a first biasing member (34) configured to urge the first brake lining (38) to engage the rail (14), and a first actuator (30) configured to move the first brake lining (38) to disengage the rail (14) when the first actuator (30) is energized. The brake (26) may be configured to be mounted on an elevator car (16) of the elevator system (10).
Abstract:
A ropeless elevator system (80) is disclosed. The ropeless elevator system (80) includes a plurality of hoistways (22, 26, 72) in which a plurality of elevator cars (24) circulate to a plurality of floors. Each hoistway (22, 26, 72) is assigned to a single direction of travel for the elevator cars (24). The single direction of travel is either upward or downward. A first quantity of upward hoistways (86) is unequal to a second quantity of downward hoistways (88), and a speed of each of the plurality of elevator cars (24) in the upward hoistways (86) is greater than a speed of each of the plurality of elevator cars in the downward hoistways (88).
Abstract:
An elevator system (20) is disclosed. The elevator system (20) includes a hoistway (22, 26, a transfer station (34, 36, 42), and a propulsion system (50). The propulsion system (50) may include a moving part (52) mounted on the elevator car (24), and a stationary part (54). An interaction of the moving part (52) and the stationary part (54) may generate a thrust force to move the elevator car (24) in a vertical direction within the hoistway (22, 26) and the transfer station (34, 36, 42). The stationary part (54) may include a first section (80) disposed in the hoistway (22, 26), and a second section (26) disposed in the transfer station (34, 36, 42), the second section (82) having thrust force generation characteristics different from thrust force generation characteristics of the first section (80).
Abstract:
An elevator system includes a first hoistway; a second hoistway; and a structural member disposed between the first hoistway and the second hoistway; the structural member supporting a first stationary portion of a propulsion system for the first hoistway; the structural member supporting a first guide surface for an elevator car in the first hoistway; the structural member supporting a second stationary portion of the propulsion system for the second hoistway; the structural member supporting a second guide surface for an elevator car in the second hoistway.
Abstract:
A braking system for an elevator system includes two or more braking surfaces located at an elevator car and frictionally engageable with a rail of an elevator system. One or more actuators are located at the elevator car and are operably connected to at least one braking surface of the two or more braking surfaces. The one or more actuators are configured to urge engagement and/or disengagement of the at least one braking surface with the rail to stop and/or hold the elevator car during operation of the elevator system. One or more braking guides are located at the elevator car to maintain a selected distance between the two or more braking surfaces and the rail.
Abstract:
A transfer station (40) for a ropeless elevator system hoistway (11) is provided. The transfer station (40) includes a first lane (13, 15, 17), a second lane (13, 15, 17), and a parking area (42) located proximate one of the first lane (13, 15, 17) and the second lane (13, 15, 17). The transfer station (40) also includes a plurality of carriages (46) moveable within the first lane (13, 15, 17), the second lane (13, 15, 17), and the parking area (42), the plurality of carriages (46) configured to support and move an elevator car (14). The transfer station (40) further includes a cassette (44) configured to support and move the plurality of carriages (46). The transfer station (40) yet further includes a guiding member (48) engaged with the cassette (44), wherein the position of each of the plurality of carriages (46) relative to the first lane (13, 15, 17), the second lane (13, 15, 17) and the parking area (42) is modified by horizontal or vertical movement of the cassette (44).
Abstract:
The present disclosure relates generally to a propulsion system for an elevator having a first motor portion mounted to one of an object to be moved and a stationary structure and a second motor portion mounted to the other of the object to be moved and the stationary structure, the first motor portion having at least one coil.
Abstract:
A guide assembly (60) for guiding movement of an elevator car (30) is provided including a first (66) and second (68) guide support coupled to the elevator car (30). The first guide support (66) and the second guide support (68) are separated from one another by a gap (G) wider than an adjacent primary portion (42) of a propulsion system (40) of the elevator car (30). A pair of first guides (70) is mounted to the first (66) and second (68) guide support, respectively. The first guides (70) are substantially parallel and are configured to guide movement of the elevator car (30) in a first direction to maintain a clearance between the primary (42) and secondary (44) portions of the propulsion system (40) of the elevator car (30). A second guide (72) is mounted to one of the first (66) and second (68) guide support. The second guide (72) is oriented substantially perpendicular to the first guides (70). The second guide (72) is configured to guide movement of the elevator car (30) in a second direction.
Abstract:
A conveyance system includes a car; a machine for imparting motion to the car, the machine including a stator and a rotor, the stator including 12*k stator teeth, the rotor including 11*k rotor poles, wherein k is a natural even number, the machine including windings located at the stator teeth, the windings arranged in 6 phases; and a drive unit for providing drive signals to the machine, the drive unit including a plurality of drives, the number of drives being an integer multiple of 2.
Abstract:
A ropeless elevator system (80) is disclosed. The ropeless elevator system (80) may include a plurality of elevator cars (24), a first hoistway (22), a second hoistway (26), an upper transfer station (34), and a lower transfer station (36). Movement of each of the plurality of elevator cars (24) may be controlled according to a predetermined assignment (90, 112) in which: a plurality of floors (101-110, 121-130) is divided into a plurality of floor groups (92, 94, 114, 116), each of the plurality of elevator cars (24) is assigned to at least one of the plurality of floor groups (92, 94, 114, 116), and each of the plurality of elevator cars (24) is dispatched only to floors within the at least one floor group assigned thereto.