Abstract:
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Abstract:
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
Abstract:
This transmission device can notify of a control value pertaining to transmission power without causing an increase in the amount of signaling. A control unit (103) controls transmission power based on a bit sequence notified from a reception device and the association between the bit sequence and a control value pertaining to transmission power; in the association, each bit sequence is respectively associated with a first control value candidate group and a second control value candidate group; when the device is not the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the first control value candidate group, and when the device is the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the second control value candidate group.
Abstract:
Disclosed are a radio transmission device and a radio transmission method which reduce the RACH conflict ratio and improve the RACH detection characteristic. When the device and the method are used: as the number of signature numbers allocated for UE by the network side increases, the condition for allocating a signature by UE itself is mitigated and an expectation value which is a statistic average value of the RA quantity using the signature allocated by UE for itself is decreased; and as the number of signature numbers allocated for UE by the network side decreases, the condition for allocating a signature by UE itself is limited and an expectation value of the RA quantity using the signature allocated by UE for itself is increased.
Abstract:
Provided is a radio communication device which can prevent interference between SRS and PUCCH when the PUCCH transmission bandwidth fluctuates and suppress degradation of CQI estimation accuracy by the band where no SRS is transmitted. The device includes: an SRS code generation unit (201) which generates an SRS (Sounding Reference Signal) for measuring uplink line data channel quality; an SRS arrangement unit (202) which frequency-multiplexes the SRS on the SR transmission band and arranges it; and an SRS arrangement control unit (208) which controls SRS frequency multiplex so as to be uniform in frequency without modifying the bandwidth of one SRS multiplex unit in accordance with the fluctuation of the reference signal transmission bandwidth according to the SRS arrangement information transmitted from the base station and furthermore controls the transmission interval of the frequency-multiplexed SRS.
Abstract:
A radio communication device capable of randomizing both inter-cell interference and intra-cell interference. In this device, a spreading section primarily spreads a response signal in a ZAP sequence set by a control unit. A spreading section secondarily spreads the primarily spread response signal in a block-wise spreading code sequence set by the control unit. The control unit controls the cyclic shift amount of the ZAC sequence used for the primary spreading in the spreading section and the block-wise spreading code sequence used for the secondary spreading in the spreading section according to a set hopping pattern. The hopping pattern set by the control unit is made up of two hierarchies. An LB-based hopping pattern different for each cell is defined in the first hierarchy in order to randomize the inter-cell interference. A hopping pattern different for each mobile station is defined in the second hierarchy to randomize the intra-cell interference.
Abstract:
The transmission of a reference signal, such as a CSI-RS, is enabled while maintaining a power saving effect when performing inter-cell cooperative transmission/reception or the like in a plurality of cells. In order to realize inter-cell cooperative transmission/reception, a CSI-RS which is used for estimating the state of a spatial propagation path of a communication line is generated by a CSI-RS generation unit, and the CSI-RS is disposed in a predetermined subframe by a disposition unit and transmitted. At this time, when a frame has ten subframes #0 to #9, the CSI-RS is disposed in the subframes #4 and #9, which are subframes excluding the subframes #0 and #5 incapable of transmitting a CSI-RS and are subframes other than subframes capable of acting as MBSFN subframes when discontinuous communication (Extended Cell DTX) is performed so as to achieve power saving, and transmitted.
Abstract:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method, R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) are divided into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequences is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
Abstract:
This transmission device can notify of a control value pertaining to transmission power without causing an increase in the amount of signaling. A control unit (103) controls transmission power based on a bit sequence notified from a reception device and the association between the bit sequence and a control value pertaining to transmission power; in the association, each bit sequence is respectively associated with a first control value candidate group and a second control value candidate group; when the device is not the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the first control value candidate group, and when the device is the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the second control value candidate group.
Abstract:
A base station (BS) which communicates with a plurality of mobile stations (MSs) is configured so as to comprise a control signal generation unit which generates control signals showing information on the allocation of resources for each of the plurality of mobile stations (MSs), and a transmission unit which transmits the control signals to the plurality of mobile stations (MSs). A control signal for a given mobile station (MS) includes information relating to another mobile station (MS).