Abstract:
The present invention provides a fuel cell system using combustion heat for an evaporator and a desulfurizer effectively. The fuel cell system comprises a combustor, a reformer, a fuel cell, a first cathode air heating part, a desulfurizer and an evaporator. A mixture of oxygen and gas which is contained in fuel is combusted in the combustor. A combustion exhaust gas generated in the combustor flows in the fuel cell system in such a manner that the combustion exhaust gas gives thermal energy to the reformer, the first cathode air heating part, the desulfurizer, and the evaporator in this order.
Abstract:
A food processing apparatus includes a reaction vessel that has a tubular shape with a bottom and contains a reactant that is liquid and to be used for food, a reactor (for example, a reaction pipe) that is disposed in the reaction vessel and provided with a photocatalyst, a light source that irradiates the photocatalyst with light, a cooler that cools the reactant in the reaction vessel, a lid that closes an opening of the reaction vessel, and a gas supplier (for example, a gas container) that supplies an oxygen-containing gas into the reaction vessel via a first through-hole formed in the lid or in a part of a side wall portion of the reaction vessel in a vicinity of the lid. An inside of the reaction vessel is controllably gastight.
Abstract:
A food processing apparatus includes a reaction tank having an internal space for storing a reactant that is in a liquid state and that is used for food, a cooler that cools a reactant stored in the reaction tank, and a catalytic reactor disposed in the internal space. The catalytic reactor includes a reaction tube, a light source disposed in the interior of the reaction tube, and a heat insulator disposed between the reaction tube and the light source. The outer surface of the reaction tube is provided with a photocatalyst. The reaction tube allows light radiated from the light source to pass therethrough. The reaction tube has a first end, and the first end is closed so as to serve as a bottom surface of the reaction tube. The thermal conductivity of the heat insulator is lower than the thermal conductivity of the reaction tube.
Abstract:
A hydrogen system includes: a compressor in which protons extracted from an anode fluid supplied to an anode move to a cathode through an electrolyte membrane and compressed hydrogen is generated; and a first eliminator including: a water-permeable membrane; a cathode gas flow path through which a cathode gas discharged from the cathode of the compressor flows, the cathode gas flow path being provided on one main surface of the water-permeable membrane; and an accommodation portion provided on the other main surface of the water-permeable membrane and filled with a liquid at a pressure lower than that of the cathode gas. The first eliminator removes moisture contained in the cathode gas.
Abstract:
A hydrogen pressurization system includes: an electrochemical hydrogen pump being configured to transfer hydrogen in a hydrogen-containing gas to be supplied to an anode to a cathode through an electrolyte membrane, and pressurize the hydrogen; and a first removal unit through which an off-gas discharged from the cathode of the electrochemical hydrogen pump and the hydrogen-containing gas to be supplied to the anode flow with a water permeable membrane interposed therebetween, the first removal unit being configured to remove at least one of water vapor and water liquid contained in the off-gas.
Abstract:
A hydrogen supply system includes: a controller; and an electrochemical hydrogen pump including: an electrolyte membrane; a pair of electrodes provided on two surfaces of the electrolyte membrane; and a current adjuster adjusting a current flowing between the electrodes, the electrochemical hydrogen pump performs a hydrogen supply operation supplying pressure-boosted hydrogen to a hydrogen demander by allowing a current to flow between the electrodes by the current adjuster; and when a cumulative hydrogen supply amount which is supplied to the hydrogen demander from start to completion of the hydrogen supply operation to the hydrogen demander from the electrochemical hydrogen pump is smaller than a cumulative hydrogen supply amount in another hydrogen supply operation, the controller controls the current adjuster so that the current flowing between the electrodes is decreased to be smaller than that in the another hydrogen supply operation.
Abstract:
An apparatus includes: an electrolyte membrane; a cathode catalyst layer provided to one main surface of the electrolyte membrane; an anode catalyst layer provided to the other main surface of the electrolyte membrane; a cathode gas diffusion layer provided on a main surface of the cathode catalyst layer not facing the electrolyte membrane; a separator including a recess through which cathode gas flows; an anode gas diffusion layer provided on a main surface of the anode catalyst layer not facing the electrolyte membrane; a voltage applicator applying a voltage between the cathode catalyst layer and the anode catalyst layer; and a fastener fastening a laminated body. The cathode gas diffusion layer is accommodated in the recess, projects from the recess in a thickness direction before fastening of the laminated body, and includes an elastic member between side surfaces of the cathode gas diffusion layer and of the recess.
Abstract:
A high-temperature operating fuel-cell module includes a fuel-cell stack; a fuel-cell stack container in which the fuel-cell stack is contained and cathode off-gas discharged from the fuel-cell stack flows; a cathode off-gas collector that is provided in the fuel-cell stack container and in which the cathode off-gas is collected; an anode off-gas passage through which anode off-gas discharged from the fuel-cell stack flows; and a combustor that combusts the cathode off-gas collected in the cathode off-gas collector and the anode off-gas flowing through the anode off-gas passage, the combustor comprising: a combustion chamber in which the anode and cathode off-gas are mixed and combusted, an ejector that is connected to the anode off-gas passage and ejects the anode off-gas into the combustion chamber, and a diffusion plate that surrounds the ejector so that the ejector is located at the center of the diffusion plate, and ejects the cathode off-gas into the combustion chamber.
Abstract:
A method for operating a fuel cell system including a fuel feeder supplying fuel, a reformer producing a hydrogen-containing gas by a reforming reaction using a reaction gas other than the fuel and the fuel supplied from the fuel feeder, a fuel cell which includes a cathode and an anode and which generates electricity using an oxidant gas supplied to the cathode and the hydrogen-containing gas supplied from the reformer to the anode, a combustor which combusts an anode off-gas discharged from the anode to produce a combustion gas, a temperature detector detecting the temperature of the combustion gas, and a storage device storing a preset target temperature profile, the target temperature profile including the temporal change in target temperature of the combustion gas in the operation of the fuel cell system, includes controlling the flow rate of the fuel supplied from the fuel feeder to the reformer in the operation such that the temperature detected by the temperature detector becomes equal to a target temperature determined on the basis of the target temperature profile.
Abstract:
A method for operating a food processing apparatus is provided. The food processing apparatus includes a reaction vessel that has a space that accumulates a liquid reactant used for a food product; a catalytic reactor that includes a reaction tube and a light source; and an introducing tube for introducing the reactant into the reaction vessel. The reaction tube has an outer surface where a photocatalyst is provided. The reaction tube transmits light. The light source generates heat at a time of light emission in which the light source emits light from an inner side of the reaction tube. The method for operating the food processing apparatus includes introducing the reactant into the reaction vessel from the introducing tube. In the introducing, the reactant is introduced up to a position at which a liquid surface of the reactant is positioned higher than an opening portion of the introducing tube.