Abstract:
A method of decoding a low density parity check (LDPC) encoded block, with the LDPC code being defined by a parity check matrix including rows, includes processing the rows of the parity check matrix. The processing includes updating data in the rows using a split-row decoding algorithm. The updating includes partitioning each row into a plurality of partitions, and determining for each partition a first local minimum of the data of the partition. The method also includes comparing for each partition the first local minimum with a threshold, and updating at least some of the data of all partitions of the row using the local minimums or the threshold depending on the results of the comparing.
Abstract:
A system implemented for example in the form of an SoC comprises a first demodulator for generating a first data stream to be decoded, and a second demodulator for generating a second data stream to be decoded, and a block decoder. The block decoder comprises an input memory for storing blocks of data from the first data stream and blocks of data from the second data stream, and a block decoding unit for processing, from the input memory, the blocks of data from the first and second data streams.
Abstract:
An input memory of an LDPC decoder is loaded with data corresponding to an LDPC frame to be decoded and including N LLRs, of which K are information LLRs and N-K are parity LLRs. At least one stream is formed of binary words of a first type, each corresponding to multiple information LLRS, with the aid of a serial/parallel conversion module, and at least one stream is formed of binary words of a second type, each corresponding to multiple parity LLRs, with the aid of a row/column interlacing device comprising a two-dimensional first-in first-out ring buffer. The first memory accesses are made in page mode in order to write the binary words of the first type to a first zone of the input memory, and the second memory accesses are made in page mode in order to write the binary words of the second type to a second zone.
Abstract:
A barrel shifter receiving N symbols, arranged n2 distinct groups of n1 symbols, applying a circular shift to the N symbols. The barrel shifter comprises n2 first barrel shifters, each applying a first circular shift to one of the groups of n1 symbols; a rearrangement module receiving the N symbols provided by the first barrel shifters and providing N symbols arranged, in a determined manner, in n1 distinct groups of n2 symbols; n1 second barrel shifters, each applying a second circular shift to one of the distinct groups of n2 symbols; a control module providing, to each first barrel shifter, an identical signal bs_ctrl1 representing the first shift, and providing, to each second barrel shifter, an identical signal bs_ctrl2 representing the second shift; and a switching module switching at least two of the symbols of the N symbols.
Abstract:
An LDPC decoder comprising processing units capable of receiving first messages and of providing second messages based on the first received messages; first and second single-port memories; and means for reading first words from the first and second memories, each first word containing first messages, providing first messages to the processing units based on the first read words, forming second words, each second word containing second messages provided by the processing units, and writing the second words into the first and second memories, said means being capable of reading a first (respectively second) word from the first memory and of simultaneously writing a second (respectively first) word into the second memory.
Abstract:
A method is for decoding a block of N information items encoded with an error correction code and mutually correlated. The method includes carrying out a first decorrelation of the N information items of a block is carried out, and storing the block decorrelated. The method also includes a performing a processing for decoding a group of P information items of the block, and decorrelating at least part of the P decoded information items. The processing for decoding the group of P information items and the decorrelation are repeated with different successive groups of P information items of the block until the N information items of the block have been processed, until a decoding criterion is satisfied.
Abstract:
A string of K initial symbols is encoded with a code of the parity check type. The K initial symbols belong to a Galois field of order q strictly greater than 2. The code is defined by code characteristics representable by a graph (GRH) comprising N−K first nodes (NCi), each node satisfying a parity check equation defined on the Galois field of order q, N packets of intermediate nodes (NITi) and NI second nodes (NSSi), each intermediate node being linked to a single first node and to several second nodes by way of a connection scheme. The string of K initial symbols is encoded by using the said code characteristics and a string of N encoded symbols is obtained, respectively subdivided into NI sub-symbols belonging respectively to mathematical sets whose orders are less than q, according to a subdivision scheme representative of the connection scheme (H).
Abstract:
An input memory of an LDPC decoder is loaded with data corresponding to an LDPC frame to be decoded and including N LLRs, of which K are information LLRs and N−K are parity LLRs. At least one stream is formed of binary words of a first type, each corresponding to multiple information LLRS, with the aid of a serial/parallel conversion module, and at least one stream is formed of binary words of a second type, each corresponding to multiple parity LLRs, with the aid of a row/column interlacing device comprising a two-dimensional first-in first-out ring buffer. The first memory accesses are made in page mode in order to write the binary words of the first type to a first zone of the input memory, and the second memory accesses are made in page mode in order to write the binary words of the second type to a second zone.
Abstract:
A concatenated channel decoding method wherein the bits of a set of N1 bits decoded using a first iterative block decoding algorithm and intended to be decoded using a second block decoding algorithm, are sent in parallel in at least one subset of P bits to a buffer for temporary storage. The decoding method comprises receiving in parallel at least one subset of Q bits belonging to the set of N1 bits sent to the buffer, detecting errors with the help of the second decoding algorithm, based on the bits decoded using the first decoding algorithm, and correcting the bits stored in the buffer as a function of possible errors detected. Detecting errors and/or the correcting the stored bits comprise a parallel processing of the bits of each subset of Q bits received.
Abstract:
An image adapter transforms an input image into an output image by successively processing tiles and by changing numbers of columns and of rows of image points. The image adapter includes queue memories connected in series so as to receive values associated with the points of a tile of the input image. A module for calculating a weighted average possesses inputs connected respectively to an output of one of the memories. The module produces values sampled in a direction parallel to the columns and corresponding to the values associated with points of the input image. A sampling rate converter, connected to the output of the module, produces values associated with the points of the output image according to a sampling rate determined for a direction parallel to the rows.