摘要:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell to reduce or minimize losses due to loss of heat energy. A molten carbonate fuel cell can be operated based on a desired ratio of heat generated by exothermic reactions in the fuel cell relative to heat consumed by endothermic reactions in the fuel cell and any optional integrated endothermic reaction stages.
摘要:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
摘要:
Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
摘要:
Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
摘要:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
摘要:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
摘要:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell assembly at increased power density. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for increased power density while still maintaining a desired temperature differential within the fuel cell assembly.
摘要:
Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
摘要:
In various aspects, systems and methods are provided for operating molten carbonate fuel cells with processes for iron and/or steel production. The systems and methods can provide process improvements such as increased efficiency, reduction of carbon emissions per ton of product produced, or simplified capture of the carbon emissions as an integrated part of the system. The number of separate processes and the complexity of the overall production system can be reduced while providing flexibility in fuel feed stock and the various chemical, heat, and electrical outputs needed to power the processes.
摘要:
In various aspects, systems and methods are provided for operating molten carbonate fuel cells in a refinery setting. The molten carbonate fuel cells can be used to provide hydrogen to various refinery processes, including providing hydrogen in place of using a carbon-based fuel for various combustion reactions. In a further aspect, CO2-containing streams generated by refinery processes can also be used as input streams to the molten carbonate fuel cells.