摘要:
A method of making a cement composite can include contacting an aqueous solution comprising calcium ions with a carbon dioxide source producing a carbonated aqueous solution. Fine particles can be submerged in the carbonated aqueous solution to produce microaggregate particles comprising the fine particles coated with calcium carbonate. The microaggregate particles can be combined with cement particles to produce the cement composite. The cement composite can be used in cementing applications for hydrocarbon wells including for casing liners and well plugs.
摘要:
A method for manufacturing concrete parts has the steps of: providing a hydraulic cement and aggregate; mixing the cement and aggregate with water to provide a fresh concrete; introducing CO2 into the fresh concrete in an amount resulting in a carbonation degree of more than 0.5 wt.-% and less than 5 wt.-% of the total carbonatable Ca and Mg phases for a first carbonation step; curing the fresh concrete until at least 15 wt.-% of the calcium aluminates are hydrated to provide a green concrete part; subjecting the green concrete part to CO2 in an amount resulting in a carbonation degree of more than 10 wt.-% of the total carbonatable Ca and Mg phases for a final carbonation step; and storing the part for 0.5 hours to 28 days for further hydration of not-yet carbonated, not-yet hydrated cement to provide the concrete part. and concrete parts obtainable with the method.
摘要:
A new integrated method to capture polluted CO2 using CaO produced from phosphogypsum calcination using sulfur as non-CO2 fuel where (1) both pollutants of phosphogypsum and CO2 are transformed into environmentally neutral or useful products such as limestone or clinker and sulfuric acid; (2) low-CO2 CaO produced from calcination of phosphogypsum with sulfur as fuel can be used to produce low-CO2 clinker that replaces the use of high-CO2 limestone as raw material; (3) the use of sulfur as fuel to calcine phosphogypsum allows the production of low-cost sulfuric acid.
摘要:
A method for sequestating carbon dioxide from flue gas by using a cement clinker. The products of this method can also be used to prepare microfiber-reinforced cement. The method of the present disclosure is capable of capturing and storing carbon dioxide in flue gas, such as cement kiln flue gas.
摘要:
A system for carbon capture includes an oxy-fuel combustor for combusting a hydrocarbon with pure oxygen to produce heat energy and carbon dioxide, a COS converter for converting the carbon dioxide to COS, a transport means for transporting the COS, a sulphur recovery unit for recovering sulphur from the COS and an adjunct sulphur-burning power plant for combusting the sulphur to generate energy for powering one or more carbon capture and storage processes.
摘要:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
摘要:
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell at conditions that can improve or optimize the combined electrical efficiency and chemical efficiency of the fuel cell. Instead of selecting conventional conditions for maximizing the electrical efficiency of a fuel cell, the operating conditions can allow for output of excess synthesis gas and/or hydrogen in the anode exhaust of the fuel cell. The synthesis gas and/or hydrogen can then be used in a variety of applications, including chemical synthesis processes and collection of hydrogen for use as a fuel.
摘要:
In various aspects, systems and methods are provided for operating molten carbonate fuel cells with processes for iron and/or steel production. The systems and methods can provide process improvements such as increased efficiency, reduction of carbon emissions per ton of product produced, or simplified capture of the carbon emissions as an integrated part of the system. The number of separate processes and the complexity of the overall production system can be reduced while providing flexibility in fuel feed stock and the various chemical, heat, and electrical outputs needed to power the processes.
摘要:
In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
摘要:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.