Abstract:
A sealing system for a flow channel includes a mandrel, a swellable element disposed about the mandrel, and a degradable polymeric element disposed on a surface of the swellable element and configured to delay swelling of the swellable element. The degradable polymeric element comprises one or more of the following: polyurethane; cured cyanate ester; an epoxy; polyimide; unsaturated polyester; or nylon.
Abstract:
In one aspect, a degradable apparatus is disclosed, including: an inner core with a first degradation rate in a downhole environment; an outer sheath disposed around an outer extent of the inner core with a second degradation rate less than the first degradation rate in the downhole environment. In another aspect, a method of temporarily sealing a downhole zone is disclosed, including: providing an inner core with a first degradation rate in a downhole environment; providing an outer sheath disposed around an outer extent of the inner core with a second degradation rate less than the first degradation rate in the downhole environment; sealing the downhole zone with the outer sheath; exposing the outer sheath to the downhole environment; and exposing the inner core to the downhole environment.
Abstract:
In one aspect, degradable material is disclosed, including: a polyurethane component with a first degradation rate in a downhole environment; and a corrosive additive component with a second degradation rate that is higher than a first degradation rate in the downhole environment. In another aspect, a method of temporarily sealing a downhole zone is disclosed, including: providing a polyurethane component with a first degradation rate in a downhole environment; providing a corrosive additive component with a second degradation rate that is higher than a first degradation rate in the downhole environment; mixing the polyurethane component and the corrosive additive component to form a degradable material; sealing the downhole zone with the degradable material; exposing the degradable material to the downhole environment; and degrading the degradable material.
Abstract:
A flow control device and a method of controlling a flow, the flow control device including a flow path for a fluid therethrough and a material at least partially defining the flow path, the material operatively arranged with a surface energy less than that of the fluid for passively impeding an undesirable component of the fluid more than a desirable component of the fluid.
Abstract:
A method of preparing a cured thermoplastic material includes curing a thermoplastic polymer having a thermal decomposition temperature greater than or equal to about 200° C., at a temperature of about 200° C. to about 400° C., for a total time of less than or equal to 200 hours. A method of making a shape memory material also includes curing a thermoplastic polymer to prepare a cured thermoplastic material.
Abstract:
A crosslinked product of a polyarylene is disclosed, having high-temperature elastomeric properties and excellent chemical resistance. The crosslinked materials are useful in oil and gas downhole applications in the form of either solids or foams. Methods for the manufacture of the crosslinked product and articles comprising the product are also disclosed.
Abstract:
A flow control device and a method of controlling a flow, the flow control device including a flow path for a fluid therethrough and a material at least partially defining the flow path, the material operatively arranged with a surface energy less than that of the fluid for passively impeding an undesirable component of the fluid more than a desirable component of the fluid.
Abstract:
A method for making a polymer composite comprises mixing, a thermosetting polymer precursor, and 0.01 to 30 wt % of a derivatized nanoparticle based on the total weight of the polymer composite, the derivatized nanoparticle including functional groups comprising carboxy, epoxy, ether, ketone, amine, hydroxy, alkoxy, alkyl, aryl, aralkyl, alkaryl, lactone, functionalized polymeric or oligomeric groups, or a combination comprising at least one of the forgoing functional groups.
Abstract:
A polymer nanocomposite comprises a polymer; and a nanoparticle derivatized to include functional groups including carboxy, epoxy, ether, ketone, amine, hydroxy, alkoxy, alkyl, aryl, aralkyl, alkaryl, lactone, functionalized polymeric or oligomeric groups, or a combination comprising at least one of the forgoing functional groups. The variability in tensile strength and percent elongation for the polymer nanocomposite is less than the variability of these properties obtained where an underivatized nanoparticle is included in place of the derivatized nanoparticle.
Abstract:
A shape memory polymer is initially fabricated to a size where its peripheral dimension will be at least as large as the borehole wall in which it is to be deployed. After the initial manufacturing the material temperature is elevated above the transition temperature and the material is stretched on a mandrel to retain its inside dimension as its outside dimension is reduced to size that will allow running the seal to a desired subterranean location without failing the material during the stretching. The material is allowed to cool below the transition temperature to hold the new shape. The material on the mandrel is then secured to a tubular string and delivered to the desired location. Wellbore fluid at given temperature raises the material again above the transition temperature, which causes the material to revert to its originally manufactured shape.