Abstract:
A method of preparing a cured thermoplastic material includes curing a thermoplastic polymer having a thermal decomposition temperature greater than or equal to about 200° C., at a temperature of about 200° C. to about 400° C., for a total time of less than or equal to 200 hours. A method of making a shape memory material also includes curing a thermoplastic polymer to prepare a cured thermoplastic material.
Abstract:
Through the combination of at least two polymer families, and the optimization of other components, a rubber compound has been developed for use in downhole applications that will swell in water-based fluids. A cellulose component, such as carboxy methyl cellulose (CMC), is used together with an acrylate copolymer (AC) that can increase the swelling capacity of an acrylonitrile butadiene rubber (NBR) in water. The amount of swelling achieved depends on physical boundaries and limitations, the salinity of the water, and the temperature.
Abstract:
Sealing elements for well packers and bridgeplugs may be constructed with magnetorheological elastomers or foams disposed about electromagnet windings set in an internal mandrel. The elastomer or foam stiffness properties are formulated for a low setting force compliance in the absence of a magnetic field. After deployment, the tool winding is energized to engage the magnetic field and raise the stiffness properties of the elastomer or foam. When the magnetic field is activated, the packer or bridgeplug has greater structural resistance to unwanted pressure displacement. When the field is de-energized, the sealing element relaxes to permit resetting or removal.
Abstract:
Downhole wellbore tools are actuated by electrically controllable fluids that are energized by a magnetic field. When energized, the viscosity state of the fluid may be increased by a degree depending on the fluid formulation. Reduction of the controllable fluid viscosity by terminating a magnetic field acting upon the fluid may permit in situ wellbore pressure to displace a tool actuating piston. When the field is de-energized, the controllable fluid viscosity quickly falls thereby permitting the fluid to flow through an open orifice into a low pressure receiving volume. In an alternative embodiment of the invention, an expandable volume fluid may be used against a slip actuating element in the same manner as a fluid pressure motor.
Abstract:
A swellable composition comprises: a matrix material; and a condensed expandable graphite material disposed in the matrix material. A seal arrangement comprises: a swellable member and a sealing member disposed on a surface of the swellable member; wherein the swellable member comprises a condensed expandable graphite material. The condensed expandable graphite material in the swellable composition and the swellable member has a bulk density of about 1 to about 8 g/cm3 and comprises expandable graphite.
Abstract translation:可溶胀组合物包含:基体材料; 以及设置在基体材料中的冷凝的可膨胀石墨材料。 密封装置包括:可膨胀构件和设置在可溶胀构件的表面上的密封构件; 其中所述可溶胀构件包括稠化的可膨胀石墨材料。 可膨胀组合物和可溶胀构件中的可膨胀石墨材料的堆积密度为约1至约8g / cm 3,并且包括可膨胀石墨。
Abstract:
A method of preparing a cured thermoplastic material includes curing a thermoplastic polymer having a thermal decomposition temperature greater than or equal to about 200° C., at a temperature of about 200° C. to about 400° C., for a total time of less than or equal to 200 hours. A method of making a shape memory material also includes curing a thermoplastic polymer to prepare a cured thermoplastic material.
Abstract:
A downhole article comprises a polymer substrate having a surface that is configured for exposure to a well fluid; the substrate comprising a thermoplastic material, an elastomer, or a combination comprising at least one of the foregoing; and a coating disposed on the surface of the polymer substrate; the coating comprising a fluorinated poly-para-xylylene.
Abstract:
A swellable composition comprises: a matrix material; and a condensed expandable graphite material disposed in the matrix material. A seal arrangement comprises: a swellable member and a sealing member disposed on a surface of the swellable member; wherein the swellable member comprises a condensed expandable graphite material. The condensed expandable graphite material in the swellable composition and the swellable member has a bulk density of about 1 to about 8 g/cm3 and comprises expandable graphite.
Abstract:
A swellable composition comprises: a matrix material; and a condensed expandable graphite material disposed in the matrix material. A seal arrangement comprises: a swellable member and a sealing member disposed on a surface of the swellable member; wherein the swellable member comprises a condensed expandable graphite material. The condensed expandable graphite material in the swellable composition and the swellable member has a bulk density of about 1 to about 8 g/cm3 and comprises expandable graphite.
Abstract:
A method of preparing a cured thermoplastic material includes curing a thermoplastic polymer having a thermal decomposition temperature greater than or equal to about 200° C., at a temperature of about 200° C. to about 400° C., for a total time of less than or equal to 200 hours. A method of making a shape memory material also includes curing a thermoplastic polymer to prepare a cured thermoplastic material.