Abstract:
Embodiments include computing devices, apparatus, and methods implemented by the apparatus for accelerating machine learning on a computing device. Raw data may be received in the computing device from a raw data source device. The apparatus may identify key features as two dimensional matrices of the raw data such that the key features are mutually exclusive from each other. The key features may be translated into key feature vectors. The computing device may generate a feature vector from at least one of the key feature vectors. The computing device may receive a first partial output resulting from an execution of a basic linear algebra subprogram (BLAS) operation using the feature vector and a weight factor. The first partial output may be combined with a plurality of partial outputs to produce an output matrix. Receiving the raw data on the computing device may include receiving streaming raw data.
Abstract:
Aspect methods, systems and devices may be configured to create/capture checkpoints without significantly impacting the performance, power consumption, or responsiveness of the mobile device. An observer module of the mobile device may instrument or coordinate various application programming interfaces (APIs) at various levels of the mobile device system and constantly monitor the mobile device (via a low power process, background processes, etc.) to identify the normal operation patterns of the mobile device and/or to identify behaviors that are not consistent with previously computed normal operation patterns. The mobile device may store mobile device state information in a memory as a stored checkpoint when it determines that the mobile device behaviors are consistent with normal operation patterns, and upload a previously stored checkpoint to a backup storage system when it determines that the mobile device behaviors are not consistent with normal operation patterns.
Abstract:
Apparatuses and methods are described herein for identifying a Unmanned Aerial Vehicle (UAV), including, but not limited to, determining a first maneuver type, determining a first acoustic signature of sound captured by a plurality of audio sensors while the UAV performs the first maneuver type, determining a second acoustic signature of sound captured by the plurality of audio sensors while the UAV performs a second maneuver type different from the first maneuver type, determining an acoustic signature delta based on the first acoustic signature and the second acoustic signature, and determining an identity of the UAV based on the acoustic signature delta.
Abstract:
Embodiments provide methods of protecting computing devices from malicious activity. A processor of a network device may receive a first network traffic flow of a monitoring computing device and a malicious activity tag identifying a malicious behavior of the first network traffic flow. The processor may determine a characteristic of the first network traffic flow based at least in part on information in the first network traffic flow and the malicious activity tag. The processor may receive a second network traffic flow from a non-monitoring computing device, and may associate the malicious activity tag and the second network traffic flow based on a characteristic of the second network traffic flow based at least in part on information in the second network traffic flow and the characteristic of the first network traffic flow.
Abstract:
Various embodiments include methods of protecting a computing device within a network from malware or other non-benign behaviors. A computing device may monitor inputs and outputs to a server, derive a functional specification from the monitored inputs and outputs, and use the functional specification for anomaly detection. Use of the derived functional specification for anomaly detection may include determining whether a behavior, activity, web application, process or software application program is non-benign. The computing device may be the server, and the functional specification may be used to determine whether the server is under attack. In some embodiments, the computing device may constrain the functional specification with a generic constraint, detect a new input-output pair, determine whether the detected input-output pair satisfies the constrained functional specification, and determine that the detected input-output pair is anomalous upon determining that the detected input-output pair (or request-response pair) satisfies the constrained functional specification.
Abstract:
Various embodiments include methods and a memory data collection processor for performing online memory data collection for memory forensics. Various embodiments may include determining whether an operating system executing in a computing device is trustworthy. In response to determining that the operating system is not trustworthy, the memory data collection processor may collect memory data directly from volatile memory. Otherwise, the operating system to collect memory data from volatile memory. Memory data may be collected at a variable memory data collection rate determined by the memory data collection processor. The memory data collection rate may depend upon whether an available power level of the computing device exceeds a threshold power level, whether an activity state of the processor of the computing device equals a sleep state whether a security risk exists on the computing device, and whether a volume of memory traffic in the volatile memory exceeds a threshold volume.
Abstract:
A network and its devices may be protected from non-benign behavior, malware, and cyber attacks by configuring a server computing device to work in conjunction with a multitude of client computing devices in the network. The server computing device may be configured to receive data that was collected from independent executions of different instances of the same software application on different client computing devices. The server computing device may combine the received data, and use the combined data to identify unexplored code space or potential code paths for evaluation. The server computing device may then exercise the software application through the identified unexplored code space or identified potential code paths in a client computing device emulator to generate analysis results, and use the generated analysis results to determine whether the software application is non-benign.
Abstract:
Various embodiments include a honeypot system configured to trigger malicious activities by malicious applications using a behavioral analysis algorithm and dynamic resource provisioning. A method performed by a processor of a computing device, which may be a mobile computing device, may include determining whether or not a target application currently executing on the computing device is potentially malicious based, at least in part, on the analysis, predicting a triggering condition of the target application in response to determining the target application is potentially malicious, provisioning one or more resources based, at least in part, on the predicted triggering condition, monitoring activities of the target application corresponding to the provisioned one or more resources, and determining whether or not the target application is a malicious application based, at least in part, on the monitored activities. The resources may be device components (e.g., network interface(s), sensor(s), etc.) and/or data (e.g., files, etc.).
Abstract:
Various aspects provide systems and methods for optimizing hardware monitoring on a computing device. A computing device may receive a monitoring request to monitor a portion of code or data within a process executing on the computing device. The computing device may generate from the monitoring request a first monitoring configuration parameter for a first hardware monitoring component in the computing device and may identify a non-optimal event pattern that occurs while the first hardware monitoring component monitors the portion of code or data according to the first monitoring configuration parameter. The computing device may apply a transformation to the portion of code or data and reconfigure the first hardware monitoring component by modifying the first monitoring configuration parameter in response to the transformation of the portion of code or data.
Abstract:
Methods, devices, systems, and non-transitory process-readable storage media for a computing device to use machine learning to dynamically configure an application and/or complex algorithms associated with the application. An aspect method performed by a processor of the computing device may include operations for performing an application that calls a library function associated with a complex algorithm, obtaining signals indicating user responses to performance of the application, determining whether a user tolerates the performance of the application based on the obtained signals indicating the user responses, adjusting a configuration of the application to improve a subsequent performance of the application in response to determining the user does not tolerate the performance of the application, and storing data indicating the user responses to the performance of the application and other external variables for use in subsequent evaluations of user inputs.