Abstract:
Systems and methods for wireless communications are disclosed. More particularly, aspects generally relate to an apparatus for wireless communications. The apparatus generally includes an interface for communicating with a plurality of wireless nodes via a plurality of antennas, and a processing system configured to determine a power state of each of the plurality of wireless nodes, and change from a first antenna mode used for communicating with the wireless nodes using a first number of spatial streams to a second antenna mode used for communicating with the wireless nodes using a second number of spatial streams, based on the determined power states of the wireless nodes.
Abstract:
In a particular aspect, a method includes receiving, at a long-term evolution (LTE) circuitry of wireless device from a wireless local area network (WLAN) circuitry of the wireless device while the LTE circuitry has control of at least one antenna of the wireless device, a request for control of the at least one antenna. Communications by the LTE circuitry using the at least one antenna corresponds to a first frequency band, communications by the WLAN circuitry using the at least one antenna correspond to a second frequency band, and the first frequency band at least partially overlaps the second frequency band. The method further includes sending a response from the LTE circuitry to the WLAN circuitry based on data included in the request.
Abstract:
Methods, systems, and devices are described for wireless communication. A device with multiple radios may establish a wireless local area network (WLAN) connection with a multi-radio gateway (i.e., a multiPHY gateway) and a wide area network (WAN) connection with a base station. The multi-radio device may receive a proxy capability indication from the multi-radio gateway and may transmit connection information relating to the second wireless connection. The multi-radio device may then establish a tunnel to the base station utilizing a proxy entity within the multi-radio gateway and close a physical (PHY) connection of the second wireless connection in order to save power. The multi-radio gateway may receive messages (e.g., paging, broadcast, or multicast messages) from the base station on behalf of the multi-radio device using the proxy entity, and tunnel the messages through to the multi-radio device using the WLAN wireless connection.
Abstract:
A first network device in communication with a second network device via a wireless communication link provides an indication to the second network device that the first network device will enter a power save mode. While operating in the power save mode, the first network device periodically transmits a trigger frame to the second network device to determine whether the second network device comprises buffered frames for the first network device. The first network device receives the buffered frames from the second network device responsive to transmitting the trigger frame. In another example, if both the first and the second network devices operate in the power save mode, the first network device receives a notification of available buffered frames from the second network device. The first network device transmits buffered frames destined for the second network device prior to transmitting a response to the received notification.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for analyzing management frames for multiple basic service sets (BSSs). In one aspect, a wireless node may obtain a first management frame from a wireless local area network (WLAN) apparatus, the WLAN apparatus operating multiple virtual access points (VAPs) respectively corresponding to multiple BSSs. The wireless node may determine whether the first management frame includes a BSS profile of a BSS associated with the wireless node based, at least in part, on an arrangement of a plurality of BSS profiles within one or more management frames. The wireless node may determine to further process the first management frame based, at least in part, on a determination that the first management frame includes the BSS profile of the BSS associated with the wireless node.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus is configured to receive information indicating a wake time period from a STA and use the received wake time period to schedule communication with the STA. The apparatus may use the received wake time period to determine a target transmission time for transmitting a trigger frame to the STA. The apparatus may transmit a beacon to the STA and then transmit the trigger frame to the STA at the target transmission time following the beacon. The apparatus may also indicate an offset from the beacon that the apparatus will use for communication with the STA based on the wake time period of the STA.
Abstract:
Certain aspects relate to methods, apparatuses, computer readable mediums and access terminals that effectively (1) detect leaky or rogue access points and (2) take one or more actions based on such detection.
Abstract:
Methods, systems, and devices for wireless communication are described. A station may be communicating with an access point during a first active communication period. The communication may be performed in a first power mode. The station may switch to a second power mode to transition to a sleep period. The station may determine, based on traffic indicator metric(s), whether to perform a speculative wakeup and switch to the first power mode at the end of the sleep period.
Abstract:
Methods, systems, and apparatuses are described for adaptive dwell time for scan procedures. A wireless station (STA) may identify a scan period during which a passive scan procedure is performed on a first channel. The STA may analyze a channel congestion metric during at least a portion of the scan period. The STA may transition from the passive scan procedure to an active scan procedure on the first channel during the scan period based at least in part on the analyzed channel congestion metric.
Abstract:
Methods, systems, and devices for wireless communication are described. A station (STA) capable of supporting multiple power modes may monitor traffic on a channel. The STA may, based on the monitoring, detect an ongoing voice call between the STA and an access point (AP). Upon detection of the ongoing voice call, the STA may switch power modes from a power mode that does not support power collapse to a power mode that does support power collapse. The STA may also prompt the AP to send a downlink voice packet, if available. After a downlink transmission opportunity corresponding to the prompt occurs, the STA may enter power collapse. The STA may remain in power collapse until a subsequent uplink transmission opportunity occurs.