Abstract:
In some aspects, a device may detect an occurrence of an event associated with the device. The device may transmit a transmission signal responsive to detecting the occurrence of the event. The device may receive a reception signal that is a reflection of the transmission signal from an object. The device may determine, using at least the reception signal, a characteristic of a movement of the object. The device may determine that the characteristic of the movement is indicative of a gesture designated for controlling a function of the device. The device may control the function of the device responsive to determining that the characteristic of the movement is indicative of the gesture. Numerous other aspects are described.
Abstract:
In some aspects, a radar device may receive a plurality of received signals comprising a plurality of reflected frequency modulated continuous wave radar signals and phase noise. The radar device may obtain a frequency-domain representation of the received signals comprising a plurality of frequency-domain spectrums. The radar device may determine a shaped noise component of the frequency-domain representation corresponding to a negative distance portion of the frequency-domain representation. The radar device may determine a shaped decision boundary for target detection based at least in part on the shaped noise component, wherein the shaped decision boundary corresponds to a positive distance portion of the frequency-domain representation. The radar device may detect a radar target based at least in part on the shaped decision boundary. The radar device may perform an action based at least in part on detecting the radar target. Numerous other aspects are described.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a mobile device to address maximum permissible exposure (MPE) proximity sensor failure. A mobile device may include a maximum permissible exposure (MPE) sensor control unit to actively monitor signals associated with proper operation of the MPE proximity sensors. Upon detecting an anomaly in any of these signals, such as a value drop below a given threshold, an MPE sensor control Unit will inform an AP (application processor, or other processor or controller) which in turn trigger display of a warning message on the display of the mobile device or the issuance of other warnings such an audible or tactile alert to inform the end user about the maximum permissible exposure (MPE) proximity sensor malfunction and/or notify the end use of a condition resulting in deactivation of the 5G new radio transceiver.
Abstract:
Methods, systems, computer-readable media, and apparatuses for determining one or more attributes of at least one target based on eigenspace analysis of radar signals are presented. In some embodiments, a subset of eigenvectors to use for forming a signal or noise subspace is identified based on principal component analysis. In some embodiments, the subset of eigenvectors is identified based on estimating the total number of targets using a discrete Fourier transform (DFT) or other spectral analysis technique. In some embodiments, a DFT is used to identify areas of interest in which to perform eigenspace analysis. In some embodiments, a DFT is used to estimate one attribute of a target, and eigenspace analysis is performed to estimate a different attribute of the target, with the results being combined to generate a multi-dimensional representation of a field of view.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment receives a sliding window of measurements associated with a radar signal transmitted by the UE; determines that a user is within a threshold distance of the UE, wherein the threshold distance is determined to be a first distance when an energy measurement, associated with the radar signal, indicates an energy reduction satisfying a threshold energy reduction, or wherein the threshold distance is determined to be a second distance when the sliding window of measurements indicates an amount of energy variation satisfying a threshold amount of energy variation associated with the radar signal; and performs, based at least in part on determining that the user is within the threshold distance, an action associated with a communication signal of the UE. Numerous other aspects are provided.
Abstract:
Aspects of the disclosure relate to radar-based signaling for detecting, measuring, and/or characterizing a target object. An electronic device may transmit a plurality of detection signals and receive a plurality of reflection signals reflected from the target object. The electronic device then processes the plurality of reflection signals to extract one or more parameters of the target object. Based on the reflection signals, the device can measure and/or characterize the target object, e.g., to obtain a heart rate and/or breathing rate. In other examples, the device may determine whether the reflection signals indicate human vital signs, such as a heart rate or breathing. The electronic device may then adjust at least one transmission parameter based on whether human vital signs are detected at the target object, and transmit the adjusted signal using the transmission parameter. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the disclosure relate to classifying a target object. An electronic device may transmit a detection signal and receive a reflection signal reflected from the target object. The electronic device then determines, based on one or more features of the reflection signal, a category of the target object and adjusts at least one transmission parameter based on the category. The electronic device then transmits an adjust signal using the transmission parameter. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Apparatus and methods are disclosed for determining, on a small form factor 5G communication device, the range of a target object include receiving, at a receiving antenna of the small form factor communication device, a composite signal where the composite signal includes a target reflection signal and a mutual coupling (MC) leakage signal, generating a composite beat waveform by mixing the composite signal with an original signal, where the composite beat includes target beat and MC leakage beat waveform components, isolating the target beat waveform by subtracting from the composite beat waveform a weighted, k-delayed composite beat waveform, where for a configured k the target beat waveforms are uncorrelated and the MC leakage beat waveforms are correlated, and determining, using the target beat waveform, a range of the target object from the small form factor device.
Abstract:
An method for wireless communication increases efficiency of its power amplifier (PA) by reducing an insertion loss of a filter (e.g., a transmit (Tx) filter). The method includes detecting, at a user equipment, a dominant spatial direction of interference. The method further includes determining whether to bypass a transmit filter based on an energy level associated with the dominant spatial direction of the interference.
Abstract:
Certain aspects of the present methods and apparatus provide a scheme to implement a generic Non-Linear Interference Cancelation (NLIC) module that can be interfaced with any topology of aggressor-victim transmitters and/or receivers of any (e.g., one or more) radio-access technology residing on the same communication device.