Abstract:
A permanent magnet rotor core includes a plurality of rotor poles circumferentially-spaced about a central axis and including a first rotor pole and an adjacent second rotor pole that each include an outer wall, and wherein the rotor core includes a rotor diameter. The rotor core also includes a plurality of radial apertures alternately-spaced with the plurality of rotor poles. The rotor core also includes a first protrusion extending from the first rotor pole into a first radial aperture of the plurality of radial apertures positioned between the first rotor pole and the second rotor pole. The rotor core further includes a second protrusion extending from the second rotor pole into the first radial aperture such that a circumferential opening is defined between the first protrusion and the second protrusion. The opening extends a first length of between approximately 0.052% and approximately 0.058% of the rotor diameter.
Abstract:
A stator assembly for use in an axial flux electric motor includes at least one tooth tip and at least one stator tooth coupled to the at least one tooth tip, wherein the at least one stator tooth includes an insertable portion. The stator assembly also includes at least one stator base including at least one receiving slot configured to receive the insertable portion to form a mechanical joint between the at least one stator base and the at least one stator tooth.
Abstract:
An electric motor for use with a power supply includes a housing and a stator fixedly secured to the housing. The stator has a plurality of coils secured to the stator. The motor also includes a first rotor secured to the stator and having a first number of poles and a second rotor secured to the stator and having a second number of poles. The second number being different than the first number. The plurality of coils cooperates with the first rotor to rotate the first rotor at a first rotor rotational speed and the plurality of coils cooperates with the second rotor to rotate the second rotor at a second rotor rotational speed. The second rotor rotational speed is substantially different than the first rotor rotational speed.
Abstract:
A motor control circuit is provided, including a first circuit, a second circuit, and a microcontroller. The first circuit is configured to conduct an analog tachometer output signal. The second circuit is configured to conduct an analog control input signal. The microcontroller is coupled to the first circuit and the second circuit, and is configured to transmit and receive serial data over a serial channel including the first circuit and the second circuit.
Abstract:
A hydrodynamic bearing assembly includes a first member including a first engaging surface. The first member is stationary in a non-operating mode of the bearing assembly and rotates about an axis in an operational mode of the bearing assembly. The hydrodynamic bearing assembly also includes a second member including a bore and a second engaging surface positioned adjacent the first engaging surface. The second member is stationary in both the non-operating mode and the operational mode of the bearing assembly. The hydrodynamic bearing assembly further includes a spacer member positioned within the bore and is configured to engage the first member to define a first gap between the first engaging surface and the second engaging surface in the non-operational mode.
Abstract:
A fluid flow system is provided. The system includes a rotation producing device, a first fluid flow device coupled to the rotation producing device and a second fluid flow device coupled to the rotation producing device and spaced from the first fluid flow device.
Abstract:
A motor controller configured to be coupled to a motor that is coupled to a fan is described. The motor controller includes a processor coupled to a memory, and is configured to operate the motor in a first operating mode in which the motor rotates the fan in a first direction at a first speed. The motor controller is further configured to operate the motor in a restriction detection mode in which the motor rotates the fan in a second direction that is opposite the first direction, determine a torque associated with the motor while the motor is rotating the fan in the second direction, determine that the torque is not within a predefined threshold range in the memory, and determine that a restriction exists in a fluid flow path associated with the motor in response to determining that the torque is not within the predefined threshold range.
Abstract:
A rotor assembly for use in a radial flux electric motor assembly includes a rotor core having a plurality of rotor poles circumferentially spaced about a central axis, wherein the rotor core includes a first end and an opposing second end. The rotor assembly further includes a plurality of core magnets alternately spaced with the plurality of rotor poles. The plurality of rotor poles define a radial aperture between each pair of circumferentially adjacent rotor poles, and each radial aperture is configured to receive at least one core magnet of the plurality of core magnets therein. A plurality of end magnets are coupled to at least one of the first end and the second end, and at least one end plate coupled to the plurality of end magnets.
Abstract:
A stator module pack for an axial flux electric machine includes a housing for attachment to a stator base, a plurality of stator modules attached to the housing, and a drive unit attached to the housing. Each stator module includes a core having at least one winding disposed thereon. The drive unit is electrically connected to at least one stator module. A plurality of stator module packs and a plurality of drive units are coupled to the stator base to form a stator of the axial flux electric machine.
Abstract:
A rotor for an electric machine includes a circular rotor base having a first surface, a second surface, and a circumferential outer edge extending from the first surface to the second surface, a plurality of magnets disposed proximate the circumferential outer edge of the circular rotor base, and a plurality of flux guides. Each magnet has a first surface and a second surface. The first surface of each magnet is attached to the first surface of the circular rotor base, and the second surface of each magnet defines a first shape. Each flux guide is attached to the second surface of a different magnet and has a first surface attached to the second surface of a first respective magnet and a second surface opposite the first surface. The second surface of each flux guide defines a second shape different than the first shape of the magnets.