Abstract:
In certain embodiments, a control/optimization system includes an instantiated model object stored in memory on a model server. The model object includes a model of a plant or process being controlled. The model object comprises an interface that precludes the transmission of proprietary information via the interface. The control/optimization system also includes a decision engine software module stored in memory on a decision support server. The decision engine software module is configured to request information from the model object through a communication network via a communication protocol that precludes the transmission of proprietary information, and to receive the requested information from the model object through the communication network via the communication protocol.
Abstract:
In one embodiment, a model predictive control system for an industrial process includes a processor to execute an optimization module to determine manipulated variables for the process over a control horizon based on simulations performed using an objective function with an optimized process model and to control the process using the manipulated variables, to execute model modules including mathematical representations of a response or parameters of the process. The implementation details of the model modules are hidden from and inaccessible to the optimization module. The processor executes unified access modules (UAM). A first UAM interfaces between a first subset of the model modules and the optimization module and adapts output of the first subset for the optimization module, and a second UAM interfaces between a second subset of the model modules and the first subset and adapts output of the second subset for the first subset.
Abstract:
One embodiment of the present disclosure describes an industrial system, which includes a control system that controls operation of an industrial process by instructing an automation component in the industrial system to implement a manipulated variable setpoint. The control system includes a process model that model operation of the industrial process, control optimization that determines the manipulated variable setpoint based at least in part on the process model, a control objective function, and constraints on the industrial process, in which the control objective function includes a tuning parameter that describes weighting between aspects of the industrial process affected by the manipulated variable setpoint; and tuning optimization circuitry that determines the tuning parameter based at least in part on a tuning objective function, in which the tuning objective function is determined based at least in part on a closed form solution to an augmented version of the control objective function, which includes the constraints as soft constraints.
Abstract:
The embodiments described herein include one embodiment that provides a control method including determining a linear approximation of a pre-determined non-linear model of a process to be controlled, determining a convex approximation of the nonlinear constraint set, determining an initial stabilizing feasible control trajectory for a plurality of sample periods of a control trajectory, executing an optimization-based control algorithm to improve the initial stabilizing feasible control trajectory for a plurality of sample periods of a control trajectory, and controlling the controlled process by application.
Abstract:
In certain embodiments, a control system includes a model-less controller configured to control operation of a plant or process. The control system also includes a model-based controller that includes a model of the plant or process being controlled by the model-less controller. The model-based controller is configured to modify parameters of the model-less controller.
Abstract:
The embodiments described herein include one embodiment that a control method including executing an infeasible search algorithm during a first portion of a predetermined sample period to search for a feasible control trajectory of a plurality of variables of a controlled process, executing a feasible search algorithm during a second portion of the predetermined sample period to determine the feasible control trajectory if the infeasible search algorithm does not determine a feasible control trajectory, and controlling the controlled process by application of the feasible control trajectory.
Abstract:
In certain embodiments, a control/optimization system includes an instantiated model object stored in memory on a model server. The model object includes a model of a plant or process being controlled. The model object comprises an interface that precludes the transmission of proprietary information via the interface. The control/optimization system also includes a decision engine software module stored in memory on a decision support server. The decision engine software module is configured to request information from the model object through a communication network via a communication protocol that precludes the transmission of proprietary information, and to receive the requested information from the model object through the communication network via the communication protocol.
Abstract:
A non-transitory computer-readable medium comprising computer-executable instructions that, when executed, are configured to cause a processor to perform operations that include receiving image data after an operation is performed by an industrial automation device on a product; analyzing the image data based an object-based image analysis (OBIA) model to classify the product as one of a plurality of conditions related to manufacturing quality and the OBIA model includes property layers associated with features related to a manufacturing of the product; determining whether the one of the conditions indicates an anomaly being present in the product; sending a notification indicative of the one of the plurality of conditions is presently associated with the product; identifying a property layer associated with classifying the one of the plurality of conditions; and updating the OBIA model based on the property layer and the input indicative of the anomaly being incorrectly associated with the product.
Abstract:
An industrial data broker system receives contextualized industrial data from one or more industrial devices that support data modeling at the device level. The received industrial data is augmented with contextualization metadata that defines correlations between the data relevant to an analytical objective, and labels specifying analytic topics to which each data item is relevant. The broker system allows external systems, such as analytic systems, to subscribe to topics of interest, and streams a subset of contextualized device data relevant to the topic of interest to the external system for analysis.
Abstract:
The embodiments described herein include one embodiment that provides a control method that includes connecting a first controller to a control system; receiving control system configuration data from a database, in which the configuration data comprises holistic state data of a second controller in the control system; and configuring operation of the first controller based at least in part on the configuration data received.