Abstract:
A system to detect a ground fault at the output of an inverter section prior to powering up a motor drive system is disclosed. A low voltage power supply is connected to the DC bus prior to connecting the input power source to the rectifier section. If a ground fault exists, the voltage potential on the DC bus causes conduction through one of the freewheeling diodes connected in parallel to the power switching device on the output of the inverter section. A fault detection circuit generates a signal corresponding to the presence of the low Voltage potential when the low voltage is applied to the DC bus. If a ground fault is present at the output of one of the inverter sections, the motor drive system prevents the AC voltage from being applied to the rectifier section.
Abstract:
An integrated drive motor (IDM) power distribution architecture utilizes an IDM power interface module (IPIM) to create a control voltage that is distributed to all the IDMs in a network. This power distribution may be accomplished along a hybrid cable, for example, that includes both signal conductors and power conductors. The IPIM is capable of detecting short circuits and/or overload conditions and disabling the power supply to the IDMs. Additionally, a second power supply may be utilized in the IPIM such that when the power supply to the IDMs is deactivated, the IPIM may remain functional, for example, to report one or more fault conditions to the user. Additionally, this reporting of fault status may be accomplished via a user display integrated with or coupled to the IPIM.
Abstract:
A filter for reducing radiated emissions in switching power converters such as a motor drive is disclosed. The switching power converter modulates a DC voltage input to generate a desired AC voltage output. Capacitors are connected in parallel between each output phase and a common connection, which may be a ground connection. The magnitude and layout of the capacitors are selected to minimize current conducted by the capacitors. The capacitors may be surface mount technology located proximate to the switching devices or the capacitors may be incorporated in the circuit board on which the switching devices are mounted. The filter may be applied to any of the switching elements in a motor drive, such as the inverter section, an active rectifier section, or a switched mode power supply.
Abstract:
A system to monitor the temperature of power electronic devices in a motor drive includes a base plate defining a planar surface on which the electronic devices and/or circuit boards within the motor drive may be mounted. The power electronic devices are mounted to the base plate through the direct bond copper (DBC). A circuit board is mounted to the base plate which includes a temperature sensor mounted on the circuit board proximate to the power electronic devices. The temperature sensor generates a digital signal corresponding to the temperature measured by the sensor. A copper pad is included between each layer of the circuit board and between the first layer of the circuit board and the sensor. The circuit board also includes vias extending through each layer of the board. The copper pads and vias establish a thermally conductive path between the temperature sensor and the base plate.