Abstract:
A laser ablation tool comprising a laser source which produces a beam heaving a beam path and an ablation head, the ablation head comprising a housing which on each side of the beam path is separated into a first and second portion, and at least a first Risley prism and a second Risley prism connected to the first and second portions of the housing the first and second Risley prisms being connected to a rotation mechanism, so that the two Risley prisms can be moved relative to each other and the housing so as to deflect the beam.
Abstract:
An inspection system for mounting on a user's hand. The inspection system comprising: an imaging unit comprising two sub-units, the first sub-unit being configured to provide images from a first point of view and the second sub-unit being configured to provide images from a second point of view; and a measuring unit configured to provide data relating to a physical property measured at a measurement location on the user's hand. The imaging unit has a separation sensor configured to measure the separation between the two sub-units of the imaging unit. A method of inspecting and/or servicing a machine is also disclosed.
Abstract:
A tool for machining an object including a first part including a rotatable member that is rotatable to cause rotation of a machine tool, a second part, a joint coupling the first part and the second part to enable relative movement between the first part and the second part, and a sensor to sense an object to be machined.
Abstract:
An apparatus for supporting a tool in an assembled apparatus. The apparatus includes a support structure, the support structure having a central member and a plurality of support members pivotally mounted on the central member. The support members are movable between a non-deployed position in which the support members extend a minimum distance from the central member and a deployed position in which the support members extend a maximum distance from the central member.
Abstract:
A multi jointed robot arm includes at least first and second link members connected by a connection arrangement and at least a first control cable. First and second ends of the first control cable engage with first and second engagement point of the first link member and first and second attachment points of the second link member. The assembly further includes a first actuator configured to selectively tension the first and second ends of the first control cable such that the second link member pivots toward a first or second side, wherein the connection arrangement is arranged to pivot at a first pivot point located substantially along a notional line extending between the first and second attachment points, and to pivot at a second pivot point extending between the first and second engagement points.
Abstract:
A repair method for repairing a component (6a) of a gas turbine engine (10). The method comprises first and second steps. The first step comprises directing an energy beam toward the component (6a) to ablate a first region (54) of material to form a gap extending through the component (6a) between a repair region (58) a base region (58) of the component, wherein subsequent to the first step the repair region (58) and base region (56) are joined by a connecting portion (60). In the second step, an energy beam is direct toward the component (6a) to ablate the repair region (58) to remove the repair region (58) from the component (6a).
Abstract:
An inspection arrangement including an inspection element and a positioning tool for positioning the inspection element, the inspection element being attachable to the positioning tool by an attachment arrangement, and having a fixing element to present the inspection element in use, the fixing element including a plurality of radially extending resilient elements.
Abstract:
A boroscope (60) has a first end (62) and a second end (64) and the first end (62) of the boroscope (60) has an optical fibre (66) and light source (68). A working head (70) is attached to the first end (62) of the boroscope (60). The working head (70) has an electrical motor (72) and a tool (74) is attached to and is arranged to be driven by the electrical motor (72) and the boroscope (60) carries a cable (76) extending from the electrical motor (72) to the second end (64) of the boroscope (60).
Abstract:
A sensing system for a continuum arm robot, the sensing system comprising at least one camera ring system mounted to the continuum robot, the camera ring system having at least two forward-facing cameras that face along the axis of the robot towards the tip.
Abstract:
A method of forming a protective coating includes providing a substrate including a major surface. The method further includes providing a top coat layer adjacent to the major surface of the substrate. The top coat layer includes a top coat surface distal to the substrate. The method further includes forming a plurality of slots in the top coat layer. The method further includes at least partially heating the top coat surface above a threshold temperature, such that a first portion of the top coat layer extending from the top coat surface partially melts to form a glazed layer, and a second portion of the top coat layer disposed between the glazed layer and the major surface of the substrate is not melted and includes at least a portion of each of the plurality of slots.