Abstract:
A method of forming a composite article includes impregnating an inorganic fiber preform with a slurry composition. The slurry composition includes a particulate, a solvent, and a pre-gellant material. Gelling of the pre-gellant material in the slurry composition is initiated to immobilize the particulate and yield a gelled article, and substantially all solvent is removed from the gelled article to form a green composite article. The green composite article is then infiltrated with a molten infiltrant to form the composite article.
Abstract:
A method of forming a barrier layer on a ceramic matrix composite (CMC) is described. The method includes forming a particulate surface layer comprising silicon particles on an outer surface of a fiber preform. The particulate surface layer is nitrided to convert the silicon particles to silicon nitride particles. After the nitriding, the fiber preform and the particulate surface layer are infiltrated with a molten material comprising silicon. Following infiltration, the molten material is cooled, thereby forming a ceramic matrix composite with a barrier layer thereon, where the barrier layer comprises silicon nitride and less than 5 vol. % free silicon. The barrier layer may also include silicon carbide and/or one or more refractory metal silicides.
Abstract:
In some examples, a technique for infiltrating a porous preform with a slurry to form an infiltrated-preform, where the slurry includes a plurality of solid particles, where the plurality of solid particles include a plurality of fine ceramic particles defining an average fine particle diameter, a plurality of coarse ceramic particles defining an average coarse particle diameter, and a plurality of diamond particles, where the average fine particle diameter is less than the average coarse particle diameter, and infiltrating the infiltrated-preform with a molten metal infiltrant to form a ceramic matrix composite (CMC) article.
Abstract:
A method of melt infiltration for producing a ceramic matrix composite comprises applying a surface slurry onto one or more outer surfaces of an impregnated porous preform. The surface slurry comprises a solvent and particulate solids, and the preform comprises a framework of ceramic fibers loaded with particulate matter. The surface slurry is dried to form a porous layer comprising the particulate solids on the one or more outer surfaces of the impregnated porous preform. After forming the porous layer, an end portion of the impregnated porous preform that includes at least part of the porous layer is immersed in a molten material, and the molten material is infiltrated into the impregnated porous preform from the end portion. The porous layer serves as a wick to transport the molten material over the one or more outer surfaces, thereby enabling melt infiltration of the impregnated porous preform from other portions thereof.
Abstract:
A ceramic matrix composite includes continuous silicon carbide fibers in a ceramic matrix comprising silicon carbide and a MAX phase compound having a chemical composition Mn+1AXn, where M is a transition metal selected from the group consisting of: Ti, V, Cr, Sc, Zr, Nb, Mo, Hf, and Ta; A is a group-A element selected from the group consisting of: Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl and Pb; and X is carbon or nitrogen, with n being an integer from 1 to 3.
Abstract:
A method of melt infiltration for producing a ceramic matrix composite comprises applying a surface slurry onto one or more outer surfaces of an impregnated porous preform. The surface slurry comprises a solvent and particulate solids, and the preform comprises a framework of ceramic fibers loaded with particulate matter. The surface slurry is dried to form a porous layer comprising the particulate solids on the one or more outer surfaces of the impregnated porous preform. After forming the porous layer, an end portion of the impregnated porous preform that includes at least part of the porous layer is immersed in a molten material, and the molten material is infiltrated into the impregnated porous preform from the end portion. The porous layer serves as a wick to transport the molten material over the one or more outer surfaces, thereby enabling melt infiltration of the impregnated porous preform from other portions thereof.
Abstract:
The disclosure describes techniques for forming a surface layer of an article including a CMC using a cast. In some examples, the surface layer includes three-dimensional surface features, which may increase adhesion between the CMC and a coating on the CMC. In some examples, the surface layer may include excess material, with or without three-dimensional surface features, which is on the CMC. The excess material may be machined to remove some of the excess material and facilitate conforming the article to dimensional tolerances, e.g., for fitting the article to another component. The excess material may reduce a likelihood that the CMC (e.g., reinforcement material in the CMC) is damaged by the machining.
Abstract:
A method of forming a composite article includes impregnating an inorganic fiber preform with a slurry composition. The slurry composition includes a particulate, a solvent, and a pre-gellant material. Gelling of the pre-gellant material in the slurry composition is initiated to immobilize the particulate and yield a gelled article, and substantially all solvent is removed from the gelled article to form a green composite article. The green composite article is then infiltrated with a molten infiltrant to form the composite article.