Method of forming a boron nitride (BN) nanotube interface coating on ceramic fibers

    公开(公告)号:US11434175B2

    公开(公告)日:2022-09-06

    申请号:US16890203

    申请日:2020-06-02

    发明人: Jun Shi Sungbo Shim

    摘要: An electrophoretic deposition method of forming a boron nitride (BN) nanotube interface coating on ceramic fibers has been developed. The method comprises immersing first and second electrodes in a suspension including surface-modified BN nanotubes, where the first electrode includes ceramic fibers positioned on a surface thereof. The surface-modified BN nanotubes comprise BN nanotubes with an electrically charged polymer adsorbed on surfaces thereof. A voltage is applied to the first and second electrodes, and the surface-modified BN nanotubes move toward the first electrode and deposit on the ceramic fibers. After the deposition of the surface-modified BN nanotubes, the ceramic fibers are removed from the suspension and heat treated. Accordingly, a BN nanotube interface coating is formed on the ceramic fibers.

    Method of forming a ceramic matrix composite (CMC) component having an engineered surface

    公开(公告)号:US11198276B2

    公开(公告)日:2021-12-14

    申请号:US16277189

    申请日:2019-02-15

    摘要: A method of forming a ceramic matrix composite (CMC) component having an engineered surface includes applying a surface slurry comprising first particulate solids in a liquid carrier to an outer surface of a ceramic fiber preform. The surface slurry is dried to remove the liquid carrier, and thus a surface slurry layer comprising the first particulate solids is formed on the outer surface. The surface slurry layer is polished to a predetermined thickness and/or surface finish. After polishing, a ceramic tape comprising second particulate solids is applied to the surface slurry layer, and pressure is applied to attach the ceramic tape to the surface slurry layer and to induce consolidation of the ceramic tape and the surface slurry layer. Thus, a multilayer surface region comprising the surface slurry layer and a ceramic tape layer is formed on the ceramic fiber preform. The ceramic fiber preform and the multilayer surface region are infiltrated with a molten material, and, upon cooling, a CMC component having an engineered surface is formed.