摘要:
A digital communication system (20) communicates using a polar amplitude phase shift keyed (P-APSK) phase point constellation (70, 70', 70"). Pragmatic encoding is accommodated using the constellation (70, 70', 70") to simultaneously communicate both encoded and uncoded information bits (69, 51). The constellation (70, 70', 70") has an even number of phase point rings (74) and equal numbers of phase points (72) in ring pairs (75, 76, 77). Encoded information bits (69) specify secondary modulation and uncoded information bits (51) specify primary modulation. The constellation (70, 70', 70") is configured so secondary sub-constellations (78) include four phase points (72) arranged so that two of the four phase points (72) exhibit two phase angles at one magnitude and the other two of the four phase points (72) exhibit phase angles that are at another magnitude. The difference between the phase angles at different magnitudes within a secondary sub-constellation (78) is constant.
摘要:
A communication system (11) uses concatenated coding in which an inner code is configured to match the needs of an outer code. The inner code is implemented through a pragmatic trellis coded modulation encoder (18) and decoder (34). A parser (50) of the encoder (18) distributes fewer than one user information bit per unit interval (66) to a convolutional encoder (58) which generates at least two convolutionally encoded bits for each user information bit it processes. Exactly one of the convolutionally encoded bits is phase mapped (56) with at least two user information bits during each unit interval (66). The decoder (34) detects a frame sync pattern (48) inserted into the user information bits to resolve phase ambiguities. Phase estimates are convolutionally decoded (100) to provide decoded data estimates that are then used to selectively rotate the phase estimates prior to routing the phase estimates to a slice detector (118).
摘要:
A communication system (10) includes a modulation section (12) and a demodulation section (14). The modulation section (12) performs frequency modulation in accordance with a frequency trajectory signal (28, 30, 32). An intersymbol interference (ISI) prediction filter (20) adjusts the amplitude of the frequency trajectory signal (28, 30, 32) in response to data code (16) sequences being conveyed over a plurality of symbols (18). More frequent data changes in the sequence of the data codes (16) lead to greater amplitudes in the frequency trajectory signal. The demodulation section (14) applies a distorted phase signal to a decision circuit (38). The distorted phase signal conveys a received phase (46) that includes ISI. Due to the equalization applied by the ISI prediction filter (20), the received phase (46) approximates a target phase (40, 42) in spite of the ISI.
摘要:
An on-signal calibration system I and Q signals of a transmitter to remove distortions in the RF output signal. The transmitter generates I and Q values and converts, modulates and combines the I and Q values into the RF output signal for transmission. The calibration system includes a detector, a sampler, a selector, an imbalance estimator, and an IQ corrector. The detector senses the RF output signal and provides a detection signal indicative thereof. The sampler samples the detection signal and provides digital samples. The selector selects from among the digital samples that correspond to predetermined ranges of the I and Q values, or otherwise predetermined selection boxes at predetermined phases. The imbalance estimator determines at least one imbalance estimate based on selected digital samples. The IQ corrector corrects the I and Q values using at least one imbalance estimate.
摘要:
A communication system (10) includes a transmitter (12) which induces in a communication signal (16), a first component of in-phase to quadrature phase (I-Q) imbalance and a receiver (14) which adds a second component of I-Q imbalance. A digital, intermediate frequency (IF) I-Q balancer (38) compensates for the receiver-induced I-Q imbalance so that total distortion is sufficiently diminished and a data directed carrier tracking loop (60) may then perform carrier synchronization to generate a baseband signal (70). An adaptive equalizer (64) within the carrier tracking loop (60) may then effectively operate to compensate for additional distortions, such as the transmitter-induced I-Q imbalance.
摘要:
A phase-noise compensated digital communication receiver (40, 40′, 40″) includes a carrier tracking loop (56) which imposes a transport delay on a carrier tracking loop signal (60) before that signal (60) is fed back upon itself. The carrier tracking loop (56) includes a phase rotator (58) that rotates a down-converted digital communication signal (50) by a phase determined by a phase-conveying signal (72). A carrier tracking loop signal is obtained from the carrier tracking loop and delayed in a delay element (82) by a duration that compensates for the transport delay. A phase rotator (84) then rotates the delayed carrier tracking loop signal through a phase value determined by the phase-conveying signal (72) to obtain an open-loop phase signal (86) from which data are extracted. Different embodiments of the receiver (40, 40′, 40″) are provided to accommodate adaptive equalizer (54) issues.
摘要:
A method of canceling gain and phase imbalance including estimating a cancellation parameter based on the signal divided by its complex conjugate, calculating a correction value for the signal using the cancellation parameter, and correcting the signal by subtracting the correction value from the signal. Estimate the cancellation parameter may include performing a stochastic gradient algorithm or a least squares estimate. A cancellation system including a conjugate conversion unit, an estimator, a combiner, a converter, and a subtractor. The estimator estimates a cancellation parameter and the combiner combines the cancellation parameter and the complex conjugate signal to provide a cancellation signal. The converter converts the cancellation signal to a correction signal, and the subtractor subtracts the correction signal from the imbalanced signal to provide a corrected signal. The combiner may be an adaptable tap of a digital signal processing circuit.
摘要:
A phase-noise compensated digital communication receiver (40, 40', 40") includes a carrier tracking loop (56) which imposes a transport delay on a carrier tracking loop signal (60) before that signal (60) is fed back upon itself. The carrier tracking loop (56) includes a phase rotator (58) that rotates a down-converted digital communication signal (50) by a phase determined by a phase-conveying signal (72). A carrier tracking loop signal is obtained from the carrier tracking loop and delayed in a delay element (82) by a duration that compensates for the transport delay. A phase rotator (84) then rotates the delayed carrier tracking loop signal through a phase value determined by the phase-conveying signal (72) to obtain an open-loop phase signal (86) from which data are extracted. Different embodiments of the receiver (40, 40', 40") are provided to accommodate adaptive equalizer (54) issues.
摘要:
A digital demodulator (10) reads symbol samples into a memory buffer (38) that can be played forward and backward into a phase locked loop (48). During an initial non-data directed symbol timing estimating phase (56) the demodulator (10) achieves an approximate frequency synchronization and starts to achieve phase synchronization on an incoming stream of symbols. During a first forward readout pass (58) of stored samples, the phase locked loop (48) begins the frequency and phase convergence. During subsequent pass (60) using a reverse readout of stored samples, phase locked loop (48) continues to converge toward zero phase error. Then another forward pass (66), phase locked loop (48) achieves usable frequency and phase synchronization of carrier and begins valid data extraction.