Abstract:
An electronic label electronically displaying information, and a display control method of the electronic label. The electronic label includes a first display configured to have front and back surfaces with polarizing filters attached on the both surfaces, respectively, and display, on the front surface, information that is able to be seen with bare eyes, a second display configured to have front and back surfaces with a polarizing filter attached only on the back surface, and display, on the front surface, information that is unable to be seen with bare eyes, a communication module configured to communicate with a server or a gateway, a memory configured to store information received through the communication module, and a controller configured to control operations of the first display and the second display.
Abstract:
There are provided a power supply device and a method for power supplying using the same. The power supply device may include a piezoelectric transformer unit including a plurality of piezoelectric layers, and a detecting unit detecting a feedback voltage by using at least one of the plurality of piezoelectric layers.
Abstract:
A charging apparatus maintains a balance in power between battery cells by respectively charging the battery cells with power, and rapidly charges the battery cells with power. The charging apparatus supplying unit wirelessly supplying power, and the battery apparatus includes a plurality of charging units corresponding to a plurality of battery cells in a one-to-one scheme. Each of the plurality of charging units respectively includes a charging unit charging a corresponding battery cell with power wirelessly received from the power supplying unit.
Abstract:
There is provided a driver device for a power factor correction circuit including first and second main switches that are switched on and off with a phase difference therebetween, and first and second auxiliary switches that provide conduction paths of surplus voltage in the first and second main switches before the first and second main switches are switched on, the driver device including: an input unit receiving a plurality of input signals; and an output unit outputting a first control signal for the first main switch, a second control signal for the second main switch, a third control signal for the first auxiliary switch, and a fourth control signal for the second auxiliary switch based on a plurality of input signals.
Abstract:
A power supply apparatus includes: converters configured to switch an input power to convert the input power into a total direct current (DC) power; and a controller configured to control DC power-to-total DC power ratios of the converters based on at least one of whether or not the converters are operated or operation temperatures of the converters.
Abstract:
There is provided a wireless charging device including: a case part including at least two case portions which are configured to be overlapped with each other; and a power supply part including power supply units disposed in the case portions, respectively, wherein when the case portions are overlapped with each other, power supply electrodes of the power supply units are disposed to be overlapped with each other in the same direction, so as to charge at least one target object.
Abstract:
A power supply apparatus for supplying power in a wireless manner or a wired-wireless manner is provided. The power supply apparatus includes a power conversion unit converting input power into first power, and a wireless power supply unit varying a switching frequency switching the first power to wirelessly transmit the switched first power in one of a first wireless transmission manner or a second wireless transmission manner or wirelessly transmit the switched first power at a frequency within a resonance frequency band of one wireless transmission manner of wireless transmission manners having different resonance frequency bands.
Abstract:
There is provided a non-contact type charger including: a plurality of power transmitting coils transmitting power in a non-contact manner; and a power converting unit controlling the power transmitted by the plurality of power transmitting coils depending on coupling coefficients, wherein the coupling coefficients are set by transmitting power state information between each of the plurality of power transmitting coils and a plurality of power receiving coils which receive the power transmitted by the plurality of power transmitting coils to charge a plurality of battery cells connected thereto with the power.
Abstract:
A piezoelectric energy harvester includes a thin film member, a support member situated to support the center or an edge of the thin film member, a piezoelectric member situated on the thin film member, and a driving member situated on the thin film member, situated to be misaligned with the support member, and configured to press the edge or the center of the thin film member. Such a design provides improved durability and functionality for a piezoelectric
Abstract:
Examples provide a piezoelectric energy harvester and a wireless switch including the same. The piezoelectric energy harvester includes a pressure transmission part situated between a pressing plate and a piezoelectric body, so as to transmit a uniform amount of pressure to the piezoelectric body, thereby generating a constant level of energy. In addition, a wireless switch uses energy generated in the piezoelectric energy harvester as its driving power, thereby transmitting radio frequency (RF) communications signals to an external electronic device to control the operation of the electronic device.