Abstract:
A user authentication apparatus includes an electrocardiogram (ECG) waveform acquirer configured to acquire an authentication ECG waveform of a user to authenticate the user; a filter configured to filter the authentication ECG waveform using a Kalman filter by applying a reference model parameter extracted from a reference ECG waveform to the Kalman filter; and an authenticator configured to compare the filtered ECG waveform and the reference ECG waveform, and determine whether the filtered authentication ECG waveform corresponds to the reference ECG waveform based on a result of the comparing.
Abstract:
An electronic apparatus includes: an external coil connected via a pair of a first feed-through portion and a second feed-through portion to a communication circuit, the external coil comprising a first coil part and a second coil part disposed outside a housing; a wireless power transmission circuit; an electrode signal processing circuit included in the housing; an external capacitor disposed outside the housing and connected between the first coil part and the second coil part; a first electrode connected to the first coil part at one end of the external capacitor; and a second electrode connected to the second coil part at another end of the external capacitor.
Abstract:
A method of controlling power on a low-power device and the low-power device for performing the method are provided. The method includes performing a first operation, of acquiring sensing data, using power stored in an internal battery of the low-power device, wherein the first operation consumes a first power consumption from the internal battery; and performing a second operation, with respect to the acquired sensing data, and which consumes a second power consumption, using power wirelessly transmitted from an external device located outside of the low-power device, wherein the second power consumption is greater than the first power consumption.
Abstract:
A bio-electroceutical device includes: a cell reservoir configured to accommodate a cell cluster comprising an organoid fused with a biomaterial; and a cell controller configured to control, using an electrical signal, a secretion of an active component by the organoid in the cell cluster.
Abstract:
An authentication apparatus includes one or more processors configured to temporally implement a neural network, used to extract a feature value from hidden nodes, that is connected to input nodes to which an electrocardiogram (ECG) signal is input so as to share a weight set with the input nodes, and to match the ECG signal and the extracted feature value to a user for registration.
Abstract:
A user authentication apparatus includes an electrocardiogram (ECG) waveform acquirer configured to acquire an authentication ECG waveform of a user to authenticate the user; a filter configured to filter the authentication ECG waveform using a Kalman filter by applying a reference model parameter extracted from a reference ECG waveform to the Kalman filter; and an authenticator configured to compare the filtered ECG waveform and the reference ECG waveform, and determine whether the filtered authentication ECG waveform corresponds to the reference ECG waveform based on a result of the comparing.
Abstract:
An oscillator using a supply regulation loop and a method of operating the oscillator are provided. The oscillator includes a reference voltage generator configured to generate reference voltages from a supply voltage, a supply regulation loop circuit including a first operational amplifier and a transistor, the first operational amplifier being configured to receive a first reference voltage of the reference voltages, and the transistor being connected to an output terminal of the first operational amplifier, and a frequency locked loop (FLL) circuit configured to generate a clock signal, based on an input voltage determined based on a current flowing in the transistor and a second reference voltage of the reference voltages, wherein the first operational amplifier may include an input terminal configured to receive the first reference voltage and to receive negative feedback from the transistor, and the output terminal being configured to generate an output voltage independent of noise of the supply voltage.
Abstract:
An authentication apparatus includes a biometric data acquirer configured to acquire fingerprint data and an electrocardiogram (ECG) waveform of a user, and a humidity level acquirer configured to acquire a humidity level of skin of the user. The apparatus further includes a similarity extractor configured to adjust a first similarity between the fingerprint data and reference fingerprint data of a pre-registered user, and a second similarity between the ECG waveform and a reference ECG waveform of the pre-registered user, based on the humidity level, and extract a combined similarity based on the adjusted first similarity and the adjusted second similarity. The apparatus further includes an authenticator configured to authenticate whether the user is the pre-registered user based on the combined similarity.