Abstract:
According to one embodiment, a method for transmitting HARQ-ACK information, in which the HARQ-ACK information within a current bundling window is bundled, so that a total number of bits of the bundled HARQ-ACK information is compliant with a requirement associated with a length of the HARQ-ACK information required by a transmission format of the HARQ-ACK information, which may support carrier aggregation with more CCs in TDD UL/DL configuration 5, such that a peak throughput of user downlink is improved.
Abstract translation:根据一个实施例,一种用于发送HARQ-ACK信息的方法,其中绑定当前捆绑窗口内的HARQ-ACK信息,使得捆绑的HARQ-ACK信息的总比特数符合与 HARQ-ACK信息的发送格式所需的HARQ-ACK信息的长度,其可以支持TDD UL / DL配置5中的更多CC的载波聚合,从而提高用户下行链路的峰值吞吐量。
Abstract:
A method and a corresponding apparatus for performing uplink transmission in a wireless communication system are disclosed. The method comprises: based on at least one of the information indicating uplink transmission resources, acquiring the number of resource elements REs used for determining a PUSCH transmission; determining a transport block size TBS for the uplink transmission based on the number of REs; and performing the uplink transmission based on the determined TBS. Wherein, a PUSCH transmission occupies m time unit for transmission, and the rate matching and RE mapping of the PUSCH are performed on all resources occupied in m time unit.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method performed by a second type of transceiver node in a wireless communication system is provided, comprising: receiving a first type of data and/or a first type of control signaling from a first type of transceiver node; determining an HARQ-ACK codebook and a time unit for transmitting the HARQ-ACK codebook based on the first type of data and/or the first type of control signaling; and transmitting the HARQ-ACK codebook to the first type of transceiver node in the determined time unit.
Abstract:
A method performed by a user equipment (UE) is provided. The method includes receiving, from a base station, configuration information on a random access configuration for a narrowband including: information on an initial power of a random access preamble for an enhanced coverage level, and information associated with a power ramping for the enhanced coverage level, and performing a first random access preamble transmission corresponding to a first transmit power, wherein the first transmit power is set based on the information on the initial power of the random access preamble and the information associated with the power ramping in case that the UE is in the enhanced coverage level, and wherein the UE is a narrow band internet of things (NB-IoT) UE.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure discloses a method for operating a user equipment (UE), including: determining a type of numerology of physical resources to receive control signals and data from at least two types of multicarrier parameter numerology; and receiving the control signals and the data on the physical resources according to the determined type of numerology. The present disclosure further discloses a corresponding apparatus. By applying the technical solution disclosed in the present disclosure, it is possible to make full use of physical resources that have different characteristics.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for uplink power control, which is applied to a User Equipment (UE), and the method includes: determining a timing between a power control command and a Physical Uplink Control Channel (PUCCH), which adopts the power control command to control power. The present disclosure also provides a corresponding device.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The embodiment of the application provides a method for determining the activation state of a secondary cell and a UE. The method is applied to the technical field of wireless communication and comprises the following steps: acquiring secondary cell activation state indicator information, and then determining respective corresponding states of at least one secondary cell configured or reconfigured by a UE based on the secondary cell activation state indicator information, wherein the states include: an activation state and an inactivation state. The embodiment of the application realizes the reduction of the time delay for the user equipment to receive or send data and the reduction of the time required for deactivating a secondary cell, thereby reducing the power consumption of the UE.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a resource scheduling method, which includes: determining, by a UE, a resource allocation indicating way in DCI of a first type search space and a resource allocation indicating way in DCI of a second type search space, performing, by the UE, blind detection for PDCCH/EPDCCH on the bandwidth and the location of all the frequency resources available for the UE frequency resource allocation in the corresponding resource allocation indicating way according to the allocation unit of the UE frequency resource in the corresponding resource allocation indicating way, determining a bandwidth and a location of an uplink resource and/or a downlink resource actually allocated for the UE.
Abstract:
The present application provides a method for processing a physical resource, a user equipment, and a base station. The method for processing a physical resource includes the following steps: determining scheduled physical resource blocks (PRB) based on indication information of carrier sensing result of at least one received frequency sub-band and indication information of physical resource blocks; and receiving data on the scheduled PRBs.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method for downlink reception, width Part ‘BWP’ to which switching is made; and performing downlink reception according to the determined downlink receiving state on the active downlink BWP to which switching is made. The present disclosure also provides a method for performing PDCCH detection, and a corresponding UE and a computer readable medium.