Abstract:
A substance having a hole-transport property and a wide band gap is provided. A fluorene compound represented by a general formula (G1) is provided. In the general formula (G1), α1 and α2 separately represent a substituted or unsubstituted arylene group having 6 to 13 carbon atoms; Ar1 represents a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, a substituted or unsubstituted 4-dibenzothiophenyl group, or a substituted or unsubstituted 4-dibenzofuranyl group; n and k separately represent 0 or 1; Q1 represents sulfur or oxygen; and R1 to R15 separately represent hydrogen, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
Abstract translation:提供具有空穴传输性和宽带隙的物质。 提供由通式(G1)表示的芴化合物。 在通式(G1)中,±1和±2分别表示取代或未取代的碳原子数为6〜13的亚芳基。 Ar 1表示取代或未取代的碳原子数为6〜18的芳基,取代或未取代的4-二苯并噻吩基或取代或未取代的4-二苯并呋喃基; n和k分别表示0或1; Q 1表示硫或氧; R 1〜R 15分别表示氢,碳原子数1〜12的烷基或碳原子数6〜14的芳基。
Abstract:
An organic compound having a low HOMO level and a high hole-transport property is provided. The organic compound is represented by Formula (G1), where Ar1 represents a substituted or unsubstituted fluorenyl group, Ar2 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and A1 represents any one of a substituted or unsubstituted dibenzofuranyl group and a substituted or unsubstituted dibenzothiophenyl group. The low HOMO level and the high hole-transport property of the organic compound allow the formation of an exciplex with another organic compound, which leads to a highly efficient light-emitting element in the presence of a phosphorescent compound due to the effective overlapping between the emission of the exciplex and the longest absorption band of the phosphorescent compound.
Abstract:
A light-emitting element having a long lifetime is provided. A light-emitting element exhibiting high emission efficiency in a high luminance region is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains a first organic compound, a second organic compound, and a phosphorescent compound. The first organic compound is represented by a general formula (G0). The molecular weight of the first organic compound is greater than or equal to 500 and less than or equal to 2000. The second organic compound is a compound having an electron-transport property. In the general formula (G0), Ar1 and Ar2 each independently represent a fluorenyl group, a spirofluorenyl group, or a biphenyl group, and Ar3 represents a substituent including a carbazole skeleton.
Abstract:
An object is to provide a light-emitting element with high emission efficiency which includes a novel carbazole derivative that has a wide energy gap and can be used for a transport layer or a host material in a light-emitting element. A carbazole derivative in which the 4-position of dibenzothiophene or dibenzofuran is bonded to the 2- or 3-position of carbazole has been able to be provided by use of the carbazole derivative. Further, a light-emitting element having high emission efficiency has been able to be provided by use of the carbazole derivative.
Abstract:
A novel organic compound is provided. Alternatively, an organic compound that exhibits light emission with favorable chromaticity is provided. Alternatively, an organic compound that exhibits blue light emission with favorable chromaticity is provided. Alternatively, a light-emitting device with favorable emission efficiency is provided. Alternatively, an organic compound having a high carrier-transport property is provided. Alternatively, an organic compound with favorable reliability is provided. An organic compound having at least one amino group in which any one of a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, and a substituted or unsubstituted carbazolyl group is bonded to any one of a substituted or unsubstituted naphthobisbenzofuran skeleton, a substituted or unsubstituted naphthobisbenzothiophene skeleton, and a substituted or unsubstituted naphthobenzothienobenzofuran skeleton is provided.
Abstract:
A light-emitting element having a long lifetime is provided. A light-emitting element exhibiting high emission efficiency in a high luminance region is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains a first organic compound, a second organic compound, and a phosphorescent compound. The first organic compound is represented by a general formula (GO). The molecular weight of the first organic compound is greater than or equal to 500 and less than or equal to 2000. The second organic compound is a compound having an electron-transport property. In the general formula (GO), Ar1 and Ar2 each independently represent a fluorenyl group, a spirofluorenyl group, or a biphenyl group, and Ar3 represents a substituent including a carbazole skeleton.
Abstract:
A light-emitting element includes an EL layer between a pair of electrodes. The EL layer contains a first compound and a second compound. The first compound is a phosphorescent iridium metal complex having a LUMO level of greater than or equal to −3.5 eV and less than or equal to −2.5 eV, and the second compound is an organic compound having a pyrimidine skeleton. The light-emitting element includes an EL layer between a pair of electrodes. The EL layer contains a first compound and a second compound. The first compound is a phosphorescent iridium metal complex having a diazine skeleton, and the second compound is an organic compound having a pyrimidine skeleton.
Abstract:
A novel compound is provided. In addition, a light-emitting element with high emission efficiency and a long lifetime is provided. An organic compound represented by General Formula (G0), including a dibenzocarbazole skeleton and two amine skeletons. In General Formula (G0), A represents a substituted or unsubstituted dibenzocarbazole skeleton. The dibenzocarbazole skeleton and the amine skeletons may be bonded to each other through or not through an arylene group. In addition, a light-emitting element including the compound is provided.
Abstract:
To provide a novel fluorescent organic compound (a fluorescent compound). The organic compound is a substance that emits fluorescence and an organic compound (a host material) in which TTA can occur efficiently. In the organic compound, triplet excitons, which do not contribute to light emission, can be efficiently converted into singlet excitons. The use of such an organic compound can increase emission efficiency of a light-emitting element.
Abstract:
To provide a novel fluorescent organic compound (a fluorescent compound). The organic compound is a substance that emits fluorescence and an organic compound (a host material) in which TTA can occur efficiently. In the organic compound, triplet excitons, which do not contribute to light emission, can be efficiently converted into singlet excitons. The use of such an organic compound can increase emission efficiency of a light-emitting element.