Abstract:
The present invention provides a process for the production of alcohols, which process comprises the steps of: (a) reacting an oxygenate and/or olefinic feed in a reactor in the presence of a molecular sieve catalyst to form an effluent comprising olefins, comprising propylene; (b) separating the effluent comprising olefins as obtained in step (a) into at least a first olefinic product fraction comprising propylene and a second olefinic product fraction; (c) subjecting at least part of the first olefinic product fraction as obtained in step (b) to a hydroformylation process to form aldehydes; (d) hydrogenating at least part of the aldehydes as obtained in step (c) to form alcohols; (e) separating at least part of the alcohols as obtained in step (d) into at least a first product fraction of alcohols and a second product fraction of alcohols; and (f) recycling at least part of the first or second product fraction of alcohols to step (a).
Abstract:
The present invention relates to a process for the oxidative regeneration of a deactivated catalyst comprising molecular sieve to provide a regenerated molecular sieve catalyst, wherein said deactivated catalyst is from one or both of an oxygenate to olefin process and a olefin cracking process, said regeneration process comprising at least the steps of providing a regeneration gas stream comprising oxidant; treating the regeneration gas stream with a liquid adsorbent stream comprising an ethylene glycol in a contaminant absorption zone to remove at least a part of one or more of any water, any alkali metal ion and any alkaline earth metal ion present in the regeneration gas stream to provide a treated regeneration gas stream comprising oxidant; regenerating a deactivated catalyst comprising molecular sieve with the treated regeneration gas stream to provide a regenerated catalyst comprising regenerated molecular sieve.
Abstract:
An oxygenate to olefins (OTO) process, comprising the steps of: (i) purifying an oxygenate feedstream comprising one or more ionic contaminants by contacting the feedstream with a membrane, resulting in the formation of a retentate and a permeate separated by the membrane, which permeate is a purified oxygenate stream which contains a lower ionic contaminant concentration than the original oxygenate feedstream; (ii) introducing the purified oxygenate stream into an oxygenate to olefins reaction zone; and (iii) contacting the purified oxygenate stream with a molecular sieve catalyst in the oxygenate to olefins reaction zone to form a product stream comprising olefins.
Abstract:
The invention relates to process for the preparation of an olefinic product comprising ethylene and/or propylene from an oxygenate, the process comprising the following steps: a) an oxygenate conversion step wherein a gaseous effluent comprising olefins and a water-soluble oxygenate is obtained; b) separation of water from the effluent; c) compression of the effluent; d) acid gas removal from the compressed gaseous effluent obtained in step c), wherein the compressed gaseous effluent is treated with a caustic solution in a caustic tower; and e) separating the olefinic product from the gaseous effluent treated in step d), wherein, in a final stage in the caustic tower, water-depleted compressed gaseous effluent is treated with a water stream that is essentially free of water-soluble oxygenate and a spent water stream comprising caustic and water-soluble oxygenate is obtained, which spent water stream is withdrawn from the process.
Abstract:
The invention removes oxygenate from an olefin rich gas stream, the process comprising: (a) reacting an oxygenate, in a reaction zone in the presence of a molecular sieve catalyst, at a temperature from 350 to 1000° C., to produce an effluent stream, comprising at least oxygenate, olefin, water and acidic by-products; (b) cooling the effluent stream and contacting it with a first aqueous stream in a quench zone to produce an aqueous stream and an olefin rich gas stream; (c) compressing the olefin rich gas stream in one or more compressors in series to produce a compressed gas stream, (d) cooling the compressed gas stream and separating condensed material from said gas stream after each of the one or more compressors.
Abstract:
The invention provides a process for preparing an olefin, comprising: (a) reacting an oxygenate, in a reaction zone in the presence of a molecular sieve catalyst, at a temperature from 350 to 1000° C., to produce a effluent stream, comprising at least oxygenate, olefin, water and acidic by-products; (b) cooling the reaction effluent stream by an indirect heat exchange to a temperature greater than the dew point temperature of effluent stream; (c) further rapidly cooling the effluent stream to a temperature lower than the dew point temperature of the effluent stream by direct injection of an aqueous liquid into the effluent stream, to form a quench effluent stream; and (d) passing the quench effluent stream into a quench tower and contacting the quench effluent stream with a second aqueous liquid in the presence of at least one set of internals, to produce a quench tower gaseous stream comprising the olefin.
Abstract:
The invention relates to a process for the preparation of an olefinic product comprising ethylene and/or propylene from an oxygenate comprising: a) an oxygenate conversion step wherein a gaseous effluent comprising olefins is obtained; b) separation of water from the effluent; c) compression of the effluent; d) acid gas removal from the effluent wherein the water-depleted compressed gaseous effluent is treated with a caustic solution in a caustic tower and a non-aqueous liquid stream comprising one or more aromatic C7+ hydrocarbons is added to the caustic solution to control the formation of red oil; and e) separating the olefinic product from the gaseous effluent treated in step d).
Abstract:
The invention provides a process for the preparation of an olefinic product, comprising:(a) reacting an oxygenate feedstock, in a reaction zone in the presence of a molecular sieve catalyst, at a temperature from 350 to 1000° C., to produce a reaction effluent stream, comprising at least oxygenate, olefin, water and acidic by-products; (b) cooling the reaction effluent stream by means of an indirect heat exchange to a temperature greater than the dew point temperature of reaction effluent stream; (c) further rapidly cooling the reaction effluent stream to a temperature lower than the dew point temperature of the reaction effluent stream by direct injection of an aqueous liquid into the reaction effluent stream, to form a first quench effluent stream; and (d) separating the first quench effluent stream into a first liquid quench effluent stream and a first gaseous quench effluent stream, comprising the olefinic product.
Abstract:
The invention relates to a process for preparing ethylene, propylene and isoprene from an oxygenate, the process comprising the following steps: a) contacting the oxygenate with a molecular sieve-comprising catalyst, at a temperature in the range of from 350 to 1000° C. to produce an oxygenate conversion effluent comprising ethylene, propylene and C4+ hydrocarbons including C4+ paraffins and C4+ olefins including isobutene; b) subjecting the oxygenate conversion effluent to one or more separation steps such that at least an olefin product stream comprising ethylene and/or propylene, and a stream comprising C4 hydrocarbons including butane, n-butenes and isobutene, are obtained; c) reacting at least part of the isobutene with formaldehyde to produce isoprene.
Abstract:
A process for the preparation of an olefin product comprising ethylene, which process comprises the steps of: a) converting an oxygenate feedstock in an oxygenate-to-olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted with an oxygenate conversion catalyst under oxygenate conversion conditions, to obtain a conversion effluent comprising ethylene and/or propylene; b) separating at least a portion of the propylene from the conversion effluent to form a propylene stream; c) separating the remainder of the olefins from the conversion effluent; and d) recycling at least a portion of the propylene stream to step a).