Abstract:
A magnetic recording medium includes a substrate, a magnetic layer including an alloy having an L10 type crystal structure as a main component thereof, and a plurality of underlayers arranged between the substrate and the magnetic layer. The plurality of underlayers include at least one crystalline underlayer which has a (100) orientation, and includes W as a main component thereof and one or more kinds of elements selected from a group consisting of Fe, Ni, Co, Hf, Zr, Y, Be, Ce, La, and Sc.
Abstract:
A magnetic recording medium includes a substrate, a magnetic layer including an alloy having a L10 type crystal structure as a main component thereof, and a plurality of underlayers arranged between the substrate and the magnetic layer. The plurality of underlayers include a first underlayer including two or more elements selected from a group consisting of Ta, Nb, Ti, and V, and one or more elements selected from a group consisting of W and Mo, and a second underlayer including MgO.
Abstract:
A magnetic recording medium includes a substrate, multiple underlayers formed on the substrate, and a magnetic layer formed on the multiple underlayers. A main component of the magnetic layer is an alloy having a L10 structure. At least one of the multiple underlayers is a crystalline underlayer containing W. The W is a main component of the crystalline underlayer. The crystalline underlayer further contains 1 mol % or more to 20 mol % or less of one or more kinds of elements selected from B, Si, and C. A barrier layer including a material having a NaCl structure is formed between the crystalline underlayer and the magnetic layer.
Abstract:
A magnetic recording medium of the present invention includes an under layer formed on a substrate, and a magnetic layer, formed on the under layer, which contains an alloy having an L10-type crystal structure as a main component. The under layer includes, in order from the substrate side, a first under layer with a lattice constant a of 2.87 Å≦a
Abstract:
The present invention relates to a magnetic recording medium including a substrate; an underlayer laminated upon the substrate; and a magnetic layer laminated upon the underlayer, wherein the underlayer includes a first underlayer containing a compound represented by a following general formula: MgO(1-X), where X is within a range of 0.07 to 0.25, the magnetic layer includes a first magnetic layer containing an alloy having a L10 structure, and the alloy having the L10 structure includes B, and the first underlayer is in contact with the first magnetic layer.
Abstract:
A heat-assisted magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer including an alloy having an L10 structure, wherein the underlayer includes, from the substrate side, a bcc underlayer including a substance having a bcc structure, a first oxide layer that is in contact with the bcc underlayer, and a second oxide layer that is in contact with the magnetic layer. The bcc underlayer, the first oxide layer, and the second oxide layer are stacked in the recited order. The first oxide layer and the second oxide layer include magnesium oxide, and the second oxide layer further includes one or more compounds selected from the group consisting of vanadium oxide, vanadium nitride, and vanadium carbide.
Abstract:
The invention provides a magnetic recording medium with an excellent signal-to-noise ratio during reading by reducing the noise produced during writing of data onto the magnetic recording medium, and increasing the signal level. The assisted magnetic recording medium according to one embodiment comprising a substrate, a base layer, and a magnetic layer composed mainly of an alloy with an L10-type crystal structure, the assisted magnetic recording medium having a pinning layer in contact with the magnetic layer, and the pinning layer including Co or an alloy composed mainly of Co.
Abstract:
A magnetic recording medium includes: a substrate; a first underlayer; a second underlayer; and a magnetic layer including an alloy having a L10 type crystal structure with a (001) orientation. The substrate, the first underlayer, the second underlayer, and the magnetic layer are stacked in this order. The first underlayer is a crystalline layer that includes Mo as a main component. The second underlayer is a crystalline layer that includes a material containing Mo as a main component and that includes an oxide. The content of the oxide in the second underlayer is in a range of from 2 mol % to 30 mol %. The oxide is an oxide of one or more kinds of elements selected from a group consisting of Cr, Mo, Nb, Ta, V, and W.
Abstract:
A magnetic recording medium includes: a substrate; a first underlayer; a second underlayer; and a magnetic layer including an alloy having a L10 type crystal structure with a (001) orientation. The substrate, the first underlayer the second underlayer, and the magnetic layer are stacked in this order. The first underlayer is a crystalline layer that includes W as a main component. The second underlayer is a crystalline layer that includes a material containing W as a main component and that includes an oxide. The content of the oxide in the second underlayer is in a range of from 2 mol % to 30 mol %. The oxide is an oxide of one or more kinds of elements selected from a group consisting of Cr, Mo, Nb, Ta, V, and W.
Abstract:
A magnetic recording medium includes a substrate, an underlayer, and a magnetic layer including an alloy having a L10 type crystal structure with a (001) orientation, wherein the substrate, the underlayer, and the magnetic layer are stacked in this order, the underlayer includes a first underlayer, the first underlayer is a crystalline layer that includes a material containing W as a main component and a nitride whose content ranges from 1 mol % to 80 mol %, and the nitride includes one or more elements selected from a group consisting of Al, B, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W.