Abstract:
The present invention relates to a method for receiving control information within a subframe of a multi-carrier communication system supporting carrier aggregation, the method comprising the following steps performed at a receiving node: performing a blind detection for the control information within a search space by means of a first search pattern, wherein the first search pattern is one of a plurality of search patterns, each of the plurality of search patterns comprising a plurality of candidates distributed on any of a plurality of aggregation levels, and wherein the plurality of search patterns further comprises a second search pattern whose candidates are non-overlapping the candidates of the first search pattern on the same aggregation levels.
Abstract:
The invention relates to methods for informing an eNodeB on the transmit power status of a user equipment in a mobile communication system using component carrier (CC) aggregation. Furthermore, the invention is also related to the implementation of these methods by hardware and their implementation in software. The invention proposes procedures that allow the eNodeB to recognize the power usage status of a UE in a communication system using carrier aggregation. The UE indicates to the eNodeB, when the UE is close to using its total maximum UE transmit power or when it has exceeded same. This is achieved by the UE including indicator(s) and/or new MAC CEs to one or more protocol data units transmitted on respective component carriers within a single sub-frame that is providing the eNodeB with power status information. The MAC CEs may report a per-UE power headroom. Alternatively, the MAC CEs may report per-CC power headrooms and/or power reductions applied to the respective uplink CCs.
Abstract:
The disclosure relates to methods for improving the DRX operation of a UE by introducing an additional DRX wake-up cycle, which runs in parallel to the short and/or long DRX cycle. The DRX wake-up cycle defines time intervals after which the UE starts monitoring the PDCCH for a wake-up duration of time; the UE does not perform any other operation during the wake-up duration apart from monitoring the PDCCH. The time intervals of the wake-up cycle between the wake-up durations are preferably shorter than the one of the DRX long cycle, and may have the same or a shorter length than the ones of the DRX short cycle. The wake-up duration may be as long as the on-duration of the DRX short/long cycle, or may be preferably much shorter, such as only one or a few subframes.
Abstract:
A method of transmitting data packets over a plurality of dynamically allocated resource blocks in at least one or a combination of a time, code or frequency domain on a shared channel of a wireless communication system, comprising the steps of selecting a number of resource block candidates for potential transmission of data packets destined for a receiver and transmitting the data packet to the receiver using at least one allocated resource block from the selected resource block candidates. The invention also relates to a corresponding method of decoding data packets, a transmitter, receiver and communication system.
Abstract:
The disclosure relates to methods for improving the DRX operation of a UE by introducing an additional DRX wake-up cycle, which runs in parallel to the short and/or long DRX cycle. The DRX wake-up cycle defines time intervals after which the UE starts monitoring the PDCCH for a wake-up duration of time; the UE does not perform any other operation during the wake-up duration apart from monitoring the PDCCH. The time intervals of the wake-up cycle between the wake-up durations are preferably shorter than the one of the DRX long cycle, and may have the same or a shorter length than the ones of the DRX short cycle. The wake-up duration may be as long as the on-duration of the DRX short/long cycle, or may be preferably much shorter, such as only one or a few subframes.
Abstract:
A method of transmitting data packets over a plurality of dynamically allocated resource blocks in at least one or a combination of a time, code or frequency domain on a shared channel of a wireless communication system, comprising the steps of selecting a number of resource block candidates for potential transmission of data packets destined for a receiver and transmitting the data packet to the receiver using at least one allocated resource block from the selected resource block candidates. The invention also relates to a corresponding method of decoding data packets, a transmitter, receiver and communication system.
Abstract:
The invention relates to a new structure of a control channel region within a sub-frame of a 3GPP-based based communication system using OFDM in the downlink. This new structure of a control channel region is inter alia particularly suitable for conveying physical downlink control channel information from a donor eNodeB to a relay node. The control channel region is divided in CCEs that have equal size irrespective of the presence of further cell-specific and/or UE-specific reference signals within the control channel region. This is achieved by dividing the control channel region in plural sub-CCEs that are combined to CCEs all having equal size (in terms of resource elements that can be used for the signaling of control information). The control channel region is divided in the frequency domain and/or time domain in a FDM respectively TDM fashion in order to obtain the sub-CCEs.
Abstract:
A method of transmitting data packets over a plurality of dynamically allocated resource blocks in at least one or a combination of a time, code or frequency domain on a shared channel of a wireless communication system, comprising the steps of selecting a number of resource block candidates for potential transmission of data packets destined for a receiver and transmitting the data packet to the receiver using at least one allocated resource block from the selected resource block candidates. The invention also relates to a corresponding method of decoding data packets, a transmitter, receiver and communication system.
Abstract:
Methods inform an eNodeB on the transmit power status of a user equipment in a mobile communication system using component carrier (CC) aggregation. Also described is an implementation of these methods by hardware and in software. The invention proposes procedures that allow the eNodeB to recognize the power usage status of a UE in a communication system using carrier aggregation. The UE indicates to the eNodeB when the UE is close to using its total maximum UE transmit power or when it has exceeded the same. This is achieved by the UE including indicator(s) and/or new MAC CEs to one or more protocol data units transmitted on respective component carriers within a single sub-frame that is providing the eNodeB with power status information. The MAC CEs may report a per-UE power headroom. Alternatively, the MAC CEs may report per-CC power headrooms and/or power reductions applied to the respective uplink CCs.
Abstract:
The present invention relates to providing control information within a search space for blind decoding in a multi-carrier communication system. In particular, the control information is carried within a sub-frame of the communication system, the sub-frame including a plurality of control channel elements. The control channel elements may be aggregated into candidates for blind decoding. The number of control channel elements in a candidate is called aggregation level. In accordance with the present invention, the candidates of lower aggregation levels are localized, meaning that the control channel elements of one candidate are located adjacently to each other in the frequency domain. Some candidates of the higher aggregation level(s) are distributed in the frequency.