Abstract:
A control terminal includes a memory storing program instructions, a communication interface configured to communicate with an unmanned aerial vehicle (UAV), receive position information outputted by a positioning device of the UAV and sent by the UAV, and receive flight state information of a plurality of aircrafts detected by an aircraft detection device of the UAV and sent by the UAV, and a processor configured to execute the program instructions to detect an operation state of the positioning device based on the position information and the flight state information.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
A wireless communication method includes receiving a data transmission request. The wireless communication method also includes increasing a transmission bandwidth of an uplink based on the data transmission request. The wireless communication method also includes receiving data to be transmitted through the uplink. The uplink is a communication link through which an external device transmits data to an aircraft.
Abstract:
An image processing method includes a transmitting terminal receiving a feedback message sent by a receiving terminal. The feedback message indicates a reception state of a received image frame sent by the transmitting terminal and received by the receiving terminal before the receiving terminal sends the feedback message. The method further includes acquiring a target image frame, encoding the target image frame according to a preset error correction mechanism to generate encoding data of the target image frame in response to the feedback message indicating a reception error, and sending the encoding data of the target image frame to the receiving terminal.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.