Abstract:
A lighting test device for a display panel includes: a connection part including a first connection test pad, a second connection test pad and a plurality of test pads, which are arranged at an end of the connection part, where the connection part is allowed to be connected to the display panel through the first connection test pad, the second connection test pad and the test pads; and a test circuit which outputs a connection test signal to the first connection test pad, receives a feedback signal through the second connection test pad, and adjusts voltage levels of test signals to be applied to the test pads based on the connection test signal and the feedback signal.
Abstract:
A display apparatus includes: a substrate; a display element on the substrate; a thin-film encapsulation layer on the display element and including a first inorganic encapsulation layer, a first organic encapsulation layer, and a second inorganic encapsulation layer; a first light-shielding layer between the first inorganic encapsulation layer and the first organic encapsulation layer and having a first opening corresponding to an emission area of the display element; and a second light-shielding layer over the thin-film encapsulation layer and having a second opening corresponding to the emission area of the display element.
Abstract:
A display apparatus includes: a plurality of first display elements at a first display area; a plurality of first pixel circuits at the first display area, and electrically connected to the plurality of first display elements, respectively; a plurality of second display elements at a second display area; a plurality of second pixel circuits located along a first direction at a non-display area, and electrically connected to the plurality of second display elements, respectively; and a data line electrically connected to at least one first pixel circuit from among the plurality of first pixel circuits that is located along a second direction crossing the first direction at the first display area, and to at least one second pixel circuit from among the plurality of second pixel circuits. The plurality of second pixel circuits are spaced from the plurality of second display elements in a plan view.
Abstract:
A display panel includes: a substrate including a main display area, a component area, and a peripheral area; an auxiliary display element in the component area; an auxiliary pixel circuit in the peripheral area and comprising an auxiliary thin-film transistor and an auxiliary storage capacitor; a transparent connection line connecting the auxiliary display element to the auxiliary pixel circuit; and a first organic insulating layer and a second organic insulating layer that are stacked between the substrate and the auxiliary display element in the component area, wherein the first organic insulating layer is between the transparent connection line and the auxiliary display element, and a refractive index of the first organic insulating layer is between a refractive index of the transparent connection line and a refractive index of the second organic insulating layer.
Abstract:
A display panel includes: a substrate including a main display area, a component area, and a peripheral area; a main sub-pixel at the main display area on the substrate; a main pixel circuit connected to the main sub-pixel, and including a main storage capacitor; an auxiliary sub-pixel at the component area on the substrate; an auxiliary pixel circuit at the peripheral area on the substrate, and including an auxiliary storage capacitor; and a connecting line connecting the auxiliary sub-pixel to the auxiliary pixel circuit. A capacity of the auxiliary storage capacitor is greater than a capacity of the main storage capacitor.
Abstract:
An inspection system for a display cell having a display part and a plurality of data lines connected to first and second pixel units of the display part. An array test part and a lighting test part are located in a peripheral area around the display part. An inspection apparatus is configured to provide the array test part with an array control signal to block an array data signal from being applied to a plurality of data lines in a period in which a white image is displayed and to provide the lighting test part with a lighting control signal to block a lighting data signal from being applied to a plurality of data lines during a period in which a black image is displayed, during a drive reliability test mode for displaying a test image including the black image and the white image.
Abstract:
A display device includes a display panel including a light-emitting device to emit light; and an input sensor disposed on the display panel. The input sensor includes a first insulating layer disposed on the display panel; a first conductive layer disposed on the first insulating layer; a second insulating layer covering the first conductive layer; and a second conductive layer disposed on the second insulating layer. At least one of the first and second insulating layers includes a plurality of diffraction patterns arranged to diffract at least a portion of the light provided from the display panel.
Abstract:
Provided is a head mounted display device including a housing for providing a darkroom space, a display module in the housing and to display an image, and an optical lens for expanding the image to provide the image to a user. The display module includes a destructive interference structure which removes the image reflected from the optical lens without reflecting the image again.
Abstract:
A display apparatus with improved light-transmitting property in transparent mode is presented. The apparatus includes a substrate, a plurality of display devices disposed on the substrate, and color filters, wherein the plurality of display devices are interposed between the color filters and the substrate, the color filters transmitting visible rays of a predefined wavelength band only when ultraviolet (UV) rays are received, and transmitting visible rays when no UV rays are received.
Abstract:
Organic light-emitting diode (OLED) displays and methods of manufacturing OLD displays are disclosed. In one aspect, an OLED display includes a substrate having an emission area and a non-emission area, a pixel electrode formed in the emission area, and an intermediate layer formed over the pixel electrode and including an organic emission layer. The display also includes an opposite electrode formed in the emission and non-emission areas and at least partially covering the intermediate layer. The display further includes a black matrix formed over the opposite electrode and including a first light-blocking portion formed in the non-emission area and a second light-blocking portion formed in the emission area and having light transmittance greater than that of the first light-blocking portion.