Abstract:
A display apparatus includes a display panel, a gate driving part, and a date driving part. The display panel includes a switching element disposed in association with a pixel, a main gate line connected to the switching element, and a sub gate line spaced apart from the main gate line and connected to the main gate line via a first connecting part. The gate driving part is configured to: provide the main gate line with a main gate signal, and provide the sub gate line with a sub gate signal. The sub gate signal includes a transmission difference from the main gate signal. The data driving part is configured to provide a data line with a data signal.
Abstract:
A liquid crystal lens includes a first lens electrode, a second lens electrode, bus lines, and a contact portion. The first lens electrode is disposed in at least a display area of the liquid crystal lens. The second lens electrode is disposed in at least the display area. The bus lines are disposed in a peripheral area of the liquid crystal lens, the peripheral area being disposed outside the display area, the first lens electrode and the second lens electrode being connected to respective ones of the bus lines. The contact portion overlaps the bus lines and electrically connects the respective bus lines to the first lens electrode and the second lens electrode.
Abstract:
A display panel includes a plurality of pixels which is arranged in a pixel column and a pixel row, a gate line which is connected to pixels in a same pixel row, a first data line which is connected to pixels in a same pixel column, and a second data line which is connected to remaining pixels except for the pixels connected to the first data line among the pixels in the same pixel column. Two odd-numbered pixel rows and two even-numbered pixel rows are alternately driven so that a charge period of the pixel may be extended by 2H. In addition, a kickback difference between the odd-numbered pixel row and the even-numbered pixel row may be decreased so that a display quality may be improved.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes: a first substrate and an opposing second substrate; a first pixel electrode and a second pixel electrode disposed in a pixel area, on the first substrate, and including a plurality of branch electrodes; and a liquid crystal layer interposed between the first and second electrodes. Branches electrode of the first pixel electrode and the second pixel electrode are interlaced. The first pixel electrode has an extension disposed adjacent to the center of the pixel area, and a minimum distance between the extension and the adjacent branch electrode is different from an average minimum between the adjacent branch electrodes.
Abstract:
The present invention discloses an alignment substrate that includes a base substrate and an alignment layer arranged on the base substrate. A plurality of unit pixels is defined in the base substrate. The alignment layer includes at least two sub-alignment portions dividing the unit pixel into at least two domains. Each sub-alignment portion is arranged in a different domain of the at least two domains and is aligned to have a different pretilt direction from the other sub-alignment portions.
Abstract:
A display panel includes a gate line, a gate electrode, a planarization layer, a gate insulation layer, an active layer, a data line, a source electrode, a drain electrode, and a pixel electrode. The gate electrode extends from the gate line. The planarization layer covers the gate line and the gate electrode to have an opening exposing a portion of the gate electrode formed therethrough. The gate insulation layer covers a portion of the gate electrode exposed by the opening and the planarization layer. The active layer is formed on the gate insulation layer and corresponds to the gate electrode. The data line is formed. The source electrode extends from the data line to cover a portion of the opening. The drain electrode is spaced apart from the source electrode and covers a portion of the opening. The pixel electrode is connected to the drain electrode.
Abstract:
A display panel includes: a first pixel including: a first high pixel configured to represent a first high gray level; and a first low pixel configured to represent a first low gray level; and a second pixel adjacent the first pixel in a first direction, the second pixel including: a second high pixel configured to represent a second high gray level based on a second data voltage and the common voltage in response to the first gate signal; and a second low pixel configured to represent a second low gray level based on the second data voltage, the common voltage, and a second divided voltage different from the first divided voltage in response to the first gate signal.
Abstract:
A liquid crystal display includes: a first substrate and a second substrate disposed opposite the first substrate; a liquid crystal layer interposed between the first and second substrates and including liquid crystal molecules; a gate line which transmits a gate signal; first and second data lines which respectively transmit first and second data voltages, the first and second data voltages having opposite polarities; a first switching element connected to the gate line and the first data line; a second switching element connected to the gate line and the second data line; a first subpixel electrode connected to the first switching element; and a second subpixel electrode connected to the second switching element. The first and second subpixel electrodes overlap portions of the first and second data lines. The first and second subpixel electrodes include first and second branches, respectively, which are alternately arranged between the first and second data lines.
Abstract:
An electric-field exposure method includes forming a display cell. The display cell comprises a pixel electrode electrically connected to a data line and a gate line. A guard-ring line surrounds a display area on which the pixel electrode is disposed. A common electrode overlaps the guard-ring line. A resistance division part is connected to a node which is connected to a data pad and a gate pad. A first electrode and a second electrode are provided with first and second electronic signals, respectively. The first electrode is connected to the guard-ring line. The second electrode is electrically connected to the common electrode. The node is provided with a divided signal obtained by dividing the first and second signals through the resistance division part.
Abstract:
The present invention relates to a liquid crystal display including a pixel electrode including a first subpixel electrode and a second subpixel electrode spaced apart with a gap therebetween, a common electrode facing the pixel electrode, and a liquid crystal layer formed between the pixel electrode and the common electrode and including a plurality of liquid crystal molecules. The first and second subpixel electrodes include a plurality of branches, and each of the first and second subpixel electrodes includes a plurality of subregions. The branches extend in different directions in different subregions.