Abstract:
A method of manufacturing an organic light-emitting display apparatus includes preparing a lower substrate comprising a display area and a peripheral area surrounding the display area. A first thin film transistors (TFTs) is formed in the display area of the lower substrate. A first insulating layer is formed and disposed in the display area and at least a portion of the peripheral area of the lower substrate and that covers the first TFTs. Organic light-emitting diodes (OLEDs) are formed to be electrically connected to the first TFTs. A barrier layer is formed on at least a portion of the first insulating layer that is formed in the peripheral area of the lower substrate. A sealant is formed on the barrier layer such that at least a portion of the sealant overlaps the first insulating layer, and an upper substrate is sealed with the lower substrate.
Abstract:
A method of manufacturing an organic light emitting display apparatus, the method includes loading a substrate on a moving unit, determining an angle formed between a side of the substrate and an opening in a patterning slit sheet, rotating the patterning slit sheet by two X motors so that the side of the substrate and the opening in a patterning slit sheet extend along the same direction and forming a layer on the substrate while conveying the substrate on the moving unit in the first direction in a chamber. The patterning slit sheet moves along a direction perpendicular to the first direction during the forming the layer on the substrate so that a deposition layer having a linear pattern that extends along the first direction is formed on the substrate.
Abstract:
A display device includes a first substrate that includes a first electrode, a second substrate disposed under the first substrate and that includes, a second electrode that overlaps the first electrode, and an anisotropic conductive film disposed between the first substrate and the second substrate. The anisotropic conductive film includes an insulating resin layer and a plurality of conductive particles in the insulating resin layer. The conductive particles include first conductive particles that overlap the first electrode and the second electrode, and second conductive particles other than the first conductive particles. Each of the first conductive particles and the second conductive particles includes a first flat surface, a second flat surface that faces the first flat surface, and a curved surface rounded between the first flat surface and the second flat surface.
Abstract:
A circuit board includes a board, first connection pads disposed on the board and arranged in a first direction, second connection pads disposed on the board and arranged in the first direction, a driving chip disposed on the board and between the first connection pads and the second connection pads, and a first adhesive layer disposed on the board and overlapping with an entirety of the first connection pads in a plan view. The second connection pads are spaced apart from the first connection pads in a second direction perpendicular to the first direction.
Abstract:
A display panel includes a substrate including a display area and a pad area, a plurality of pad electrodes disposed on the pad area, and an insulating layer disposed between adjacent ones of the plurality of pad electrodes and including a heat absorbing particle. A laser is irradiated to heat the insulating layer, and the heat absorbing particle in the insulating layer absorbs the heat and cures an anisotropic conductive film by heat transfer to electrically connect the plurality of pad electrodes to a plurality of bump electrodes.
Abstract:
A circuit board includes a board, first connection pads disposed on the board and arranged in a first direction, second connection pads disposed on the board and arranged in the first direction, the second connection pads spaced apart from the first connection pads in a second direction perpendicular to the first direction, and a driving chip disposed on the board between the first connection pads and the second connection pads. Each of the first connection pads includes a first conductive layer disposed on the board, a second conductive layer which entirely overlaps with the first conductive layer in a plan view, is disposed on the first conductive layer and is formed of a different material from that of the first conductive layer, and a third conductive layer entirely overlapping with the second conductive layer and disposed on the second conductive layer.
Abstract:
A method of removing particles from a display panel is disclosed. In one aspect, the method includes charging the particles and applying an electric field to the charged particles to capture the charged particles. Organic particles and inorganic particles may be forcibly charged to capture the organic and inorganic particles using a metal bar so that the organic and inorganic particles may be substantially removed.
Abstract:
A method of manufacturing a display device including the steps of providing a lower substrate having a display area and a pad area, forming a display structure in the display area of the lower substrate, forming pad electrodes in the pad area of the lower substrate to be spaced apart from each other in a first direction parallel to a top surface of the lower substrate, forming an upper substrate on the display structure to face the lower substrate in the display area, forming a conductive film member including a non-cured resin layer and conductive balls arranged in a lattice shape on the pad electrodes, the non-cured resin layer overlapping the pad electrodes, and forming a film package on the non-cured resin layer, the film package including bump electrodes overlapping the pad electrodes.
Abstract:
A display device includes a display panel including a first signal pad and a second signal pad, a circuit board overlapped with the first and second signal pads, and an adhesive film overlapped with the first and second signal pads and disposed between the circuit board and the display panel. The adhesive film includes a base resin and a plurality of conductive balls dispersed in the base resin. The circuit board includes a first driving pad and a second driving pad. The first and second driving pads protrude toward the adhesive film and are arranged in a first direction. The first and second driving pads overlap with the first and second signal pads, respectively. The display device may be configured to satisfy the inequality:
Abstract:
A display device includes: a panel including a plurality of panel pads; a circuit board including a plurality of connection pads corresponding to the plurality of panel pads, respectively; and a layer disposed between the panel and the circuit board and including a plurality of conductive particles. The layer includes: an overlapping portion that overlaps the plurality of panel pads and the plurality of connection pads in a first direction; and a non-overlapping portion that does not overlap the plurality of panel pads and the plurality of connection pads in the first direction. In the non-overlapping portion, the conductive particles are adjacent to one side of one panel pad of adjacent panel pads in a second direction intersecting the first direction.