Abstract:
An organic light emitting display device includes a substrate, a gate insulation layer, a planarization layer, a boundary pattern, and a sub-pixel structure. The substrate includes a sub-pixel region and a transparent region. The gate insulation layer is disposed on the substrate. The planarization layer is disposed in the sub-pixel region on the gate insulation layer, and exposes the transparent region. The boundary pattern covers a boundary of the sub-pixel region and the transparent region. The sub-pixel structure is disposed on the planarization layer.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
An organic light emitting diode includes a hole injection layer, a hole transport layer, an emission layer, an electron transport layer and an electron injection layer. The hole transport layer is disposed on the hole injection layer. The emission layer is disposed on the hole transport layer. The electron transport layer is disposed on the emission layer and including at least one selected from an anthracene derivative and a pyrene derivative. The electron injection layer is disposed on the electron transport layer. The organic light emitting diode includes a material that electron mobility is lower than a traditional material of the electron transport layer. Thus, a stain and a roll-off phenomenon in the low gray scale area may be improved.
Abstract:
A compound represented by Formula 1 below and an organic light-emitting device including the compound are provided: Substituents in Formula 1 are the same as defined in the specification.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.
Abstract:
A pixel circuit according to an embodiment includes: a capacitor; a first switching unit configured to initialize the capacitor in response to a first scan signal received from a first scan line; a second switching unit configured to receive a second scan signal from a second scan line disposed in a first direction from the first scan line, to receive a third scan signal from a third scan line disposed in a second direction opposite to the first direction from the first scan line, and to be turned on in response to one of the second scan signal and the third scan signal that is activated after the first scan signal is activated to store a data signal in the capacitor; and a driving transistor configured to provide a driving current to an OLED in response to the data signal stored in the capacitor.
Abstract:
A pixel capable of realizing desired brightness and of displaying a uniform image is disclosed. In one aspect, the pixel includes an organic light emitting diode (OLED), a first transistor having a second electrode thereof coupled to an anode electrode of the OLED to control an amount of current supplied to the OLED in response to a voltage applied to a gate electrode thereof. The pixel also includes at least one second transistor coupled between the second electrode and the gate electrode of the first transistor, and a third transistor coupled between the second transistor and the gate electrode of the first transistor. The third transistor is turned off in a partial period of a period in which the second transistor is turned on.
Abstract:
Disclosed is a pixel for improving an image quality. A pixel includes: an organic light emitting diode; a first transistor to control a current supplied to the organic light emitting diode from a first power source connected to a first electrode of the first transistor in response to a voltage applied to a first node; a second transistor connected between the first node and a second node, and turned on when a scan signal is supplied to a scan line; a first capacitor connected between the second node and a data line; and a third transistor connected between a second electrode of the first transistor and the second node, and turned on when a common control signal is supplied to a common control line.