Abstract:
An exemplary embodiment provides a display device that includes a substrate including a bent portion, a polarizer disposed below the substrate, a thin film transistor disposed on the substrate, and a pixel electrode connected to the thin film transistor, wherein the polarizer includes an extending portion extended to the bent portion, and the extending portion is bent along the bent portion.
Abstract:
A display device may include a substrate, a transistor, a pixel electrode, a roof layer, and a liquid crystal layer positioned in microcavities between the roof layer and the substrate. The roof layer may include a first roof portion and a second roof portion. The first roof portion may overlap the pixel electrode and may be directly connected to the second roof portion. The second roof portion may be positioned closer to the transistor than the first roof portion. A minimum distance between the substrate and the second roof portion may be less than a minimum distance between the substrate and the first roof portion.
Abstract:
Provided is a display device, including: an insulation substrate; a thin film transistor positioned on the insulation substrate; a pixel electrode connected with the thin film transistor; a first alignment layer positioned on the pixel electrode; a second alignment layer spaced apart from the first alignment layer by a microcavity; a common electrode positioned on the second alignment layer; a roof layer on the common electrode; a liquid crystal injection hole in the common electrode and the roof layer to extend to a part of the microcavity; a liquid crystal layer filling the microcavity; and an overcoat on the roof layer to cover the liquid crystal injection hole to seal the microcavity. Each of the first alignment layer and the second alignment layer includes a plurality of heterogeneous
Abstract:
The inventive concept provides a liquid crystal display including an insulation substrate; a roof layer which is formed on the insulation substrate; a pixel electrode which is formed on the insulation substrate and under the microcavity supported by the roof layer; and a liquid crystal layer which is disposed in the microcavity. The opening corresponding to unit microcavity includes portions having a first width and a second width. According to the inventive concept, configurations of the pixel and the opening which may minimize the remaining liquid crystal are provided to adjust a size of the liquid crystal injection hole between a plurality of microcavities into which the liquid crystal is injected, which may prevent an orientation error of the liquid crystal caused by the remaining liquid crystal outside the microcavity and thus prevent the display error.
Abstract:
A liquid crystal display includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; and a roof layer facing the pixel electrode. A plurality of microcavities are between the pixel electrode and the roof layer. A liquid crystal material is in the microcavities, and a dent is formed in the roof layer.
Abstract:
The substrate of a liquid crystal display has a non-square rectangular shape and is bent such that the longer edges of the rectangular shape are nonlinear while the shorter edges are linear. Liquid crystal containerizing micro-cavities of the display are organized to be elongated in the extending direction of the nonlinear longer edges of the substrate while gate lines and liquid crystal injection holes forming areas are formed extending in the extending direction of the linear shorter edges of the substrate. Concentration of mechanical stresses may be reduced due to this configuration.
Abstract:
A liquid crystal display is provided that includes: a substrate; a thin film transistor disposed on the substrate; a protection layer disposed on the thin film transistor; a first electrode and a second electrode disposed on the protection layer; an alignment layer disposed on the second electrode; and a roof layer facing the second electrode, wherein a plurality of microcavities are formed between the second electrode and the roof layer, the microcavities include a liquid crystal material, and the alignment layer includes a photo-alignment material.
Abstract:
A display panel with microcavities each having ends of asymmetric cross-sectional area. An exemplary display panel has a substrate; an electrode disposed on the substrate; and a supporting member disposed on the electrode. The supporting member is shaped to form a cavity between the supporting member and the electrode. The cavity has a first opening at one end of the supporting member and a second opening at an opposite end of the supporting member, the first opening being positioned over the electrode. A cross-sectional area of the first opening is smaller than a cross-sectional area of the second opening.