Abstract:
A display device includes a display panel in which a first display region and a second display region adjacent to the first display region are defined. The display panel includes main pixels disposed in the first display region, first sub-pixels disposed in a first sub-region of the second display region, and second sub-pixels disposed in a second sub-region of the second display region and which have a different pixel structure from the main pixels.
Abstract:
A broadband light absorber and a display apparatus including the same. The broadband light absorber includes a substrate and a pattern layer having a mesh structure including a plurality of openings, wherein any neighboring openings among the plurality of openings are non-uniform.
Abstract:
A three-dimensional display device comprises a flat display panel and an image-converting sheet disposed on or above the display panel. The display panel comprises a matrix of unit display cells arranged as rows and columns and where the cells are spaced apart to have respective row and column direction pitches. The image-converting sheet comprises a plurality of inclined lenticular lenses where the inclination is set according to the row and column direction pitches so as to reduce perception of Moiré patterns when stereo-scopic images are projected through the image-converting sheet to an observer viewing the display panel as an upright panel having respectively different left and right stereo-scopic image projections.
Abstract:
The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
Abstract:
A display device includes a substrate including a pixel area and a transmission area, and a pixel circuit disposed in the pixel area. The pixel circuit includes a first thin-film transistor included in a first multi-layer film, and a second thin-film transistor included in a second multi-layer film on the first multi-layer film. The first thin-film transistor and the second thin-film transistor are electrically connected to each other. The display device also includes a display element disposed on the second multi-layer film and including a pixel electrode electrically connected to the second thin-film transistor via a contact hole defined in the second multi-layer film, an opposite electrode facing the pixel electrode, and an intermediate layer between the pixel electrode and the opposite electrode.
Abstract:
A display apparatus includes a pixel area and an adjacent transmission area, first to third sub-pixel electrodes disposed on a substrate, disposed in the pixel area, and spaced apart from each other, a bank layer overlapping an edge of each of the first to third sub-pixel electrodes, first to third intermediate layers respectively disposed on the first to third sub-pixel electrodes and spaced apart from each other, first to third opposite electrodes respectively disposed on the first to third intermediate layers and spaced apart from each other, and an auxiliary electrode disposed on the bank layer. The first to third opposite electrodes respectively pass through edges of the first to third intermediate layers and electrically contact the auxiliary electrode.
Abstract:
Provided is a mask manufacturing method which includes preparing a mask sheet and a frame, stretching the mask sheet, and fixing the stretched mask sheet to the frame, and forming cell openings in the mask sheet fixed to the frame.
Abstract:
An apparatus for manufacturing a display device including a mask assembly including a mask frame and a mask sheet, the mask frame including an opening area and the mask sheet covering the opening area, wherein the mask sheet includes a body fixed to the mask frame, an opening arranged in the body, the opening through which a deposition material passes, and a corrector arranged in the body and configured to correct deformation of the opening, and the corrector includes a correction hole penetrating the body and a correction member crossing at least a portion of the correction hole and being cuttably connected to the body.
Abstract:
A display device includes a substrate including a pixel area and a transmission area, and a pixel circuit disposed in the pixel area. The pixel circuit includes a first thin-film transistor included in a first multi-layer film, and a second thin-film transistor included in a second multi-layer film on the first multi-layer film. The first thin-film transistor and the second thin-film transistor are electrically connected to each other. The display device also includes a display element disposed on the second multi-layer film and including a pixel electrode electrically connected to the second thin-film transistor via a contact hole defined in the second multi-layer film, an opposite electrode facing the pixel electrode, and an intermediate layer between the pixel electrode and the opposite electrode.
Abstract:
A method of manufacturing a deposition mask includes preparing a mask-target substrate which has one surface on which a sacrificed layer pattern is formed and comprises a cover area covered by the sacrificed layer pattern and a plurality of exposed areas exposed by the sacrificed layer pattern; forming holes in the exposed areas of the mask-target substrate by emitting laser toward the mask-target substrate; and removing the sacrificed layer pattern, wherein the sacrificed layer pattern has a higher reflectance with respect to the laser than a reflectance of the mask-target substrate.