Abstract:
A pattern structure includes a plurality of pattern structure units arranged substantially on a same plane, where each of the pattern structure units has a first surface and a second surface, which are opposite to each other, and a microstructure is defined on the first surface of each of the pattern structure units, and a flattening layer disposed on the second surface of each of the plurality of pattern structure units, where the flattening layer connects the pattern structure units with each other, and a vertical step difference exists between second surfaces of the pattern structure units.
Abstract:
A directional backlight unit is provided, including a light guide plate, a light source, and a grating that is formed on a light-emitting surface of the light guide plate. The grating is configured such that an intensity of one ray of light, of the light irradiated by the light source and diffracted and emitted by the grating, is greater than a sum of intensities of all other rays of light, of the light irradiated by the light source and diffracted and emitted by the grating.
Abstract:
A directional backlight unit includes: a light source configured to emit light; a light guide plate including: an incident surface on which light emitted by the light source is incident, an emission surface from which the light incident on the incident surface is emitted, and a reflective surface facing the emission surface; a reflective polarizer provided on the emission surface and configured to transmit a portion of the light as first polarized light having a first polarization direction and reflect another portion of the light as second polarized light having a second polarization direction and being perpendicular to the first polarized light; and a diffractor configured to diffract the first polarized light transmitted through the reflective polarizer toward a plurality of viewing zones.
Abstract:
A directional backlight and a 3D image display apparatus including the directional backlight are provided. The directional backlight includes a light guide plate guiding light emitted from a light source; a diffractive device configured to adjust the direction of light exiting the light guide plate; and an aperture adjusting layer including a plurality of apertures. The aperture adjusting layer may adjust the optical output efficiency of the diffractive device.
Abstract:
A directional backlight unit and a three-dimensional image display apparatus including the directional backlight unit are provided. The directional backlight unit includes a light source, a light guide plate guiding light emitted from the light source, and a diffraction device including a plurality of sections. Each of the sections includes a grating pattern set configured to adjust the direction of light incident from the light guide plate.
Abstract:
A directional backlight unit includes: a light source configured to emit light; a light guide plate including: an incident surface on which light emitted by the light source is incident, an emission surface from which the light incident on the incident surface is emitted, and a reflective surface facing the emission surface; a reflective polarizer provided on the emission surface and configured to transmit a portion of the light as first polarized light having a first polarization direction and reflect another portion of the light as second polarized light having a second polarization direction and being perpendicular to the first polarized light; and a diffractor configured to diffract the first polarized light transmitted through the reflective polarizer toward a plurality of viewing zones.
Abstract:
A method of forming a pattern by using an imprint process includes: forming an adhesion promoting layer only in a pattern formation region on a substrate; coating a resin to cover the substrate and the adhesion promoting layer; transferring a pattern of a stamp mold to the resin covering the substrate and the adhesion promoting layer, by pressing the stamp mold onto the resin; irradiating ultraviolet light onto the resin covering the substrate and the adhesion promoting layer, to cure the resin and form a pattern of the cured resin to correspond to the pattern of the stamp mold, on the substrate; and detaching the stamp mold from the substrate, to leave a portion of the cured resin pattern only on the adhesion promoting layer on the substrate and to remove a remaining portion of the cured resin pattern from the substrate.
Abstract:
A pattern structure includes a plurality of pattern structure units arranged on a same plane, where each of the plurality of pattern structure units includes a plurality of microstructures defined on a surface thereof and having a width of less than about 1 micrometer (μm); and a connection layer disposed between the plurality of pattern structure units and having a width of less than about 10 μm, where the connection layer connects the plurality of pattern structure units to each other.
Abstract:
A method of manufacturing a master mold includes forming a plurality of replica resin layers using a mold; forming a replica template by bonding the plurality of replica resin layers on a template; forming a replica mold layer having a pattern corresponding to a pattern of the plurality of replica resin layers using the replica template; forming a flexible stamp having a pattern formed on a surface thereof using the replica mold layer; transferring the pattern formed on the surface of the flexible stamp to a mold resin; and forming a large area master mold by etching a surface of a substrate based on a pattern shape of the mold resin.
Abstract:
A patterning method using an imprint mold, to form an imprinted pattern structure, includes providing a resist layer from which the pattern structure will be formed, performing a first imprint process on a first area of the resist layer by using the imprint mold to form a first pattern of the pattern structure through deformation of the resist layer in the first area, and performing a second imprint process on a second area of the resist layer by using the imprint mold to form a second pattern of the pattern structure through deformation of the resist layer in the second area. The first and second areas are overlapped with each other in a third area of the resist layer, and the performing the second imprint process deforms a first portion of the first pattern in the third area to form the second pattern