Abstract:
A terminal device controlling method that provides a haptic effect using a haptic engine is provided, which includes sensing a haptic event, executing a non-physical parameter-based haptic function in a haptic engine so as to determine a vibration pattern corresponding to the haptic event, transferring the vibration pattern from the haptic engine to a device driver, and driving, through the device driver, a vibrator based on the vibration pattern so as to embody a haptic effect.
Abstract:
A portable terminal is provided. The portable terminal includes a shielding member disposed on an external part, a first coil disposed on a surface of the shielding member that faces the external part, and a second coil disposed on the surface of the shielding member, and surrounding the first coil on a same plane.
Abstract:
Methods and apparatus for providing feedback in a portable apparatus are provided. An object is displayed on a touch screen of the portable apparatus. A first touch, from an input unit, is detected at a position on the touch screen corresponding to the displayed object. The object is selected in response to the first touch. A copy command by which the selected object is copied to a copy target is received from the input unit. A first control command corresponding to haptic feedback determined in response to the received copy command is transmitted from the portable apparatus to the input unit.
Abstract:
In an apparatus for adjusting charging power of a wireless power receiver, when one or more wireless power receivers require charging, it is determined whether the sum of required charging powers required by the one or more wireless power receivers exceeds maximum supplied power provided by a wireless power transmitter. When a result indicates that the sum exceeds the maximum supplied power, a control operation is performed to adjust the required charging power of each wireless power receiver. Therefore, it is possible to wirelessly charge each wireless power receiver without interruption.
Abstract:
A method for controlling an electronic device and an electronic device are provided. The method includes displaying at least one object on a touch screen of the electronic device; identifying a first input at a position corresponding to the at least one object displayed on the touch screen; identifying the at least one object based on the first input; identifying a second input on the touch screen; displaying the identified at least one object at a location on the touch screen of the electronic device based on the identified second input; and providing feedback based on displaying the identified at least one object.
Abstract:
A portable terminal is provided, including a cover member which is detachably provided at a rear surface of a main body of a terminal, a resonant antenna for a reception unit provided inside of the cover member, a reception circuit unit provided inside of the main body, and a connection unit for connecting the resonant antenna for a reception unit with the reception circuit unit. The portable terminal efficiently receives the signal power provided from a charger by arranging the resonant antenna inside of the cover member, and minimizes the thickness of the portable terminal by providing the reception circuit unit inside of the main body of the terminal.
Abstract:
Disclosed is an electronic device including a battery, a case covering the battery, a wireless charging coil positioned between the battery and the case; and a communication antenna positioned between the battery and the wireless charging coil, wherein one of the communication antenna and the wireless charging coil is positioned to surround the other one of the communication antenna and the wireless charging coil, and wherein the communication antenna is spaced from the wireless charging coil by a predetermined distance and prevents interference between the communication antenna and the wireless charging coil.
Abstract:
Methods and apparatus for providing feedback in a portable apparatus are provided. An object is displayed on a touch screen of the portable apparatus. A first touch, from an input unit, is detected at a position on the touch screen corresponding to the displayed object. The object is selected in response to the first touch. A copy command by which the selected object is copied to a copy target is received from the input unit. A first control command corresponding to haptic feedback determined in response to the received copy command is transmitted from the portable apparatus to the input unit.
Abstract:
A portable terminal is provided. The portable terminal includes a shielding member attached to an inner surface of an external part, a shielding wall formed on the shielding member, a first coil attached to a surface of the shielding member that faces the inner surface of the external part, and a second coil attached to the surface of the shielding member, with the second coil surrounds the first coil on a same plane and the shielding wall being disposed between the first and second coil.
Abstract:
A portable terminal is provided. The portable terminal includes a shielding member attached to an inner surface of an external part, a shielding wall formed on the shielding member, a first coil attached to a surface of the shielding member that faces the inner surface of the external part, and a second coil attached to the surface of the shielding member, with the second coil surrounds the first coil on a same plane and the shielding wall being disposed between the first and second coil.