Abstract:
A terminal device controlling method that provides a haptic effect using a haptic engine is provided, which includes sensing a haptic event, executing a non-physical parameter-based haptic function in a haptic engine so as to determine a vibration pattern corresponding to the haptic event, transferring the vibration pattern from the haptic engine to a device driver, and driving, through the device driver, a vibrator based on the vibration pattern so as to embody a haptic effect.
Abstract:
An actuator using an electro-active polymer is provided. The actuator includes a vibration plate fixed to an electronic device; at least one electro-active polymer attached to the vibration plate, and activated when electric voltage is applied thereto; and at least one mass joined to at least one a combination member disposed on the vibration plate.
Abstract:
A method and apparatus for generating vibration based on sound characteristics in a mobile terminal are provided. The method includes converting audio data into an audio signal upon generation of a sound play request; determining whether to generate vibration based on a sound volume of the audio signal; setting an actuator to be driven for the audio signal among at least two actuators based on frequency distribution characteristics of the audio signal if it is determined upon determining to generate the vibration; and driving the actuator being set for the audio signal when outputting the audio signal.
Abstract:
A sealing apparatus of a touch panel provided in a portable terminal including a body and the touch panel, wherein the sealing apparatus is attached and coupled to a coupling area between the body and the touch panel to seal the coupling area while the touch panel is suspended over the body by a resilient member.
Abstract:
A coordinate indicating device which inputs coordinates to a coordinate measuring device is provided. The coordinate indicating device includes a power receiver for wirelessly receiving drive power from the coordinate measuring device, a rectifier for rectifying the wirelessly received drive power into Direct Current (DC) drive power, a battery for storing the rectified drive power, an actuator for outputting at least one of preset vibration, frictional force, and electrostatic force, based on relative positions of the coordinate measuring device and the coordinate indicating device by using the rectified drive power provided from the battery, a coordinate indicator for indicating coordinates at predetermined coordinates on the coordinate measuring device, and a shielding portion for shielding the coordinate indicator.
Abstract:
A haptic feedback method includes providing a user with an image that is updated based on a collision event, generating collision data including a type of the collision event and an impulse amount, generating a haptic pattern based on the collision data, and generating a vibration based on the haptic pattern.
Abstract:
An actuator using an electro-active polymer is provided. The actuator includes a vibration plate fixed to an electronic device; at least one electro-active polymer attached to the vibration plate, and activated when electric voltage is applied thereto; and at least one mass joined to at least one a combination member disposed on the vibration plate.
Abstract:
Disclosed is an electronic device having a floating panel. The electronic device includes a display bracket; a panel provided on the front side of the display bracket and configured to sense a touch input and to provide visual information; an actuator provided on the panel, and configured to provide a haptic signal corresponding to the touch input; an elastic member provided between the panel and the display bracket, and configured to elastically support the panel to float in a state in which the panel is spaced from the display bracket; and a stopper configured to fix the panel, which is lifted and supported by the elastic member, to the display bracket in a floating state.
Abstract:
A haptic feedback method includes providing a user with an image that is updated based on a collision event, generating collision data including a type of the collision event and an impulse amount, generating a haptic pattern based on the collision data, and generating a vibration based on the haptic pattern.
Abstract:
According to an embodiment of the present disclosure, an electronic device may comprise a housing including a first surface facing in a first direction and a second surface facing in a second direction opposite the first direction, the housing including a transparent cover that comprises at least part of the first surface, a display disposed between the first surface and the second surface of the housing and configured to display information through the transparent cover to an outside, an illumination part comprising light emitting circuitry disposed at an inner side of an end of the first surface of the housing and configured to emit light to the transparent cover, an optical coupler disposed between the illumination part and the transparent cover and configured to reflect light from the illumination part to the transparent cover, and a biometric sensor disposed under the transparent cover and the display. In an electronic device including a biometric sensor according to an embodiment of the present disclosure, a light source is put to use in sensing the user's fingerprint information using a biometric sensor positioned in a display activation area, thereby providing better performance and an improved outer appearance.