Abstract:
A cathode configured to use oxygen as a cathode active material, the cathode including: a cathode mixed conductor; and an additive disposed on the cathode mixed conductor and having a boiling temperature of about 200° C. or greater.
Abstract:
A metal air battery includes: at least one gas diffusion layer including a first surface and a second surface facing the first surface; at least one cathode layer disposed on the first surface and on the second surface of the gas diffusion layer and configured to use oxygen as an active material; an electrolyte membrane disposed on the cathode layer; an metal anode layer disposed on the electrolyte membrane; and a cathode current collector including at least one blade, wherein the gas diffusion layer is electrically conductive, and wherein the at least one blade of the cathode current collector contacts and is at least partially embedded in the gas diffusion layer.
Abstract:
A metal air battery includes at least one gas diffusion layer assembly; a positive electrode layer disposed on a surface of the at least one gas diffusion layer assembly, wherein the positive electrode layer is capable of using oxygen as an active material; a protective electrolyte membrane disposed on the positive electrode layer; and a negative electrode metal layer disposed on the protective electrolyte membrane, wherein the gas diffusion layer assembly includes a first gas diffusion layer and a second gas diffusion layer, wherein the second gas diffusion layer is disposed on a first surface and an opposite second surface of the first gas diffusion layer, and wherein a gas diffusivity of the first gas diffusion layer is greater than a gas diffusivity of the second gas diffusion layer. Also, the gas diffusion layer assembly described above, and a method of manufacturing a metal air battery including the gas diffusion layer assembly.
Abstract:
A metal air battery includes a battery cell module configured to generate electricity based on oxidation of a metal and reduction of oxygen; a first air purification module in fluid communication with the battery cell module and configured to supply stabilized air to the battery cell module when the metal air battery is charged; and a second air purification module in fluid communication with the battery cell module and configured to supply purified air to the battery cell module when the metal air battery is discharged.
Abstract:
A metal air battery including: a gas diffusion layer having a first surface and a second surface opposite to the first surface; at least one positive electrode layer disposed on the first surface and the second surface of the gas diffusion layer, wherein the positive electrode layer is configured to use oxygen as an active material and includes a first electrolyte; a second electrolyte disposed on the positive electrode layer; and a negative electrode metal layer disposed on the second electrolyte, wherein a side surface of the gas diffusion layer, which connects the first surface and the second surface of the gas diffusion layer, is exposed to an outside of the metal air battery, and the gas diffusion layer comprises an air flow channel that extends from the side surface of the gas diffusion layer which is exposed to the outside, to an inside of the gas diffusion layer.
Abstract:
A gas diffusion layer for a metal-air battery, the gas diffusion layer including: a porous layer including non-conductive fiber structures, a conductive carbon layer including a carbon material that is disposed on a surface of a non-conductive fiber structure of the plurality of non-conductive fiber structures.
Abstract:
A metal air battery apparatus includes: a metal air cell including a cathode layer including pores, an anode layer facing the cathode layer, and a solid electrolyte layer between the cathode layer and the anode layer; and a controller configured to control at least one of a charge rate or a discharge rate of the metal air cell based on a porosity of the cathode layer.
Abstract:
A cathode material, a cathode including the same, a method of manufacturing the cathode, and a lithium-air battery including the cathode, the cathode material configured to use water and oxygen as a cathode active material, the cathode material including a metal oxide represented by Formula 1: MxOy Formula 1 wherein, in Formula 1, M is Ti, Cu, Co, Ce, Cu, Fe, Eu, Cd, Co, Cr, Mn, Mo, Nb, Pu, Ru, Tc, U, V, Ir, or a combination thereof, 0
Abstract:
A metal air battery includes a battery module configured to generate electricity by oxidation of metal and reduction of oxygen and water; a water vapor supply unit configured to supply water vapor to the battery module; and a water vapor recovery unit configured to recover the water vapor from the battery module.
Abstract:
A gas diffusion layer for a metal-air battery, the gas diffusion layer including: a porous layer including non-conductive fiber structures, a conductive carbon layer including a carbon material that is disposed on a surface of a non-conductive fiber structure of the plurality of non-conductive fiber structures.