Abstract:
An electronic device including a coil, a power transmission circuit electrically connected with the coil, a detection circuit, and a control circuit. The control circuit of the electronic device configured to wirelessly output a first signal for identifying an access of a foreign object by first period intervals through the coil using the power transmission circuit, identify a change of the first signal using the detection circuit, wirelessly output the first signal by the first period intervals in response to a detection value of the changed first signal being less than or equal to a first threshold value, and wirelessly output the first signal by a second period intervals longer than the first period intervals in response to the detection value of the changed first signal exceeding the first threshold value.
Abstract:
An electronic device is provided. The electronic device includes a housing, a wireless charging coil disposed inside the housing, a fan disposed inside the housing and in proximity to the coil, a temperature sensor disposed inside the housing and in proximity to the coil, a wireless charging circuit having the coil and configured to transmit power wirelessly to an external device via the coil, and a control circuit electrically connected to the fan, the temperature sensor, and the wireless charging circuit. The control circuit may be configured to receive a signal from the external device, receive data related to a temperature of the coil from the temperature sensor, and control the fan at least partially on the basis of at least one of the signal and the data.
Abstract:
Various embodiments of the present disclosure relate to an apparatus and method for controlling a differential signal of a wireless power transmitter. For example, an apparatus for controlling a differential signal of a wireless power transmitter may include a converter configured to convert a single signal into differential signals; an amplifier operably coupled to the converter and configured amplify power of the differential signals, thereby providing amplified differential signals; a gauge operably coupled to the amplifier and configured to measure a phase difference and amplitude between the amplified differential signals; and a controller for converting a pulse width of the differential signals by controlling the converter according to measurements by the gauge. Further, various embodiments of the present disclosure also include other embodiments other than the aforementioned embodiments.
Abstract:
An example wireless power transmitter may include a transmission coil, a converter configured to output a driving voltage, an inverter configured to output AC power to the transmission coil using the driving voltage, and a controller. The controller may be configured to identify a first voltage at one point within the wireless power transmitter while power is wirelessly transmitted through the transmission coil. The controller may be configured to perform at least one operation for providing a first packet for reduction in modulation depth of a wireless power receiver to the wireless power receiver based on a peak-to-peak value identified to be larger than a first reference value according to the first voltage.
Abstract:
A power supply device is provided. The power supply device includes an authentication circuit, power supply circuits, and a control circuit connected to the authentication circuit and the power supply circuits. Each of the power supply circuits includes a coil and a communication circuit and may be configured to transmit a power signal to one power reception device through the coil. The control circuit performs an authentication operation for fast charging of a plurality of power reception devices without a collision by using the authentication circuit and the power supply circuits.
Abstract:
An electronic device includes a coil, and at least one control circuit electrically connected to the coil. The control circuit is configured to transmit power to an external device via the coil by using a first frequency belonging to a first frequency band, receive a packet related with wireless charging from the external device via the coil, in response to having failed to receive the packet within a first reference time, change at least one of an amplitude of the power transmitted or the first frequency used for the transmitting of the power, and to transmit power to the external device via the coil on the basis of the at least one of the changed transmit power or the changed frequency.
Abstract:
According to certain embodiments, a power transmission device comprises an induction circuit configured to transmit a wireless power signal through a charging pad and receive a signal from an external device; and at least one processor operatively connected to the induction circuit, wherein the processor is configured to: enter a wireless charging protection mode for wireless charging of the external device, measure a current value of the wireless power signal, and release the wireless charging protection mode when the packet information is not included in the signal transmitted from the external device and the measured current value or variation of the current value exceeds a threshold value.
Abstract:
An electronic device is provided. The electronic device includes a housing, a wireless charging coil disposed inside the housing, a fan disposed inside the housing and in proximity to the coil, a temperature sensor disposed inside the housing and in proximity to the coil, a wireless charging circuit having the coil and configured to transmit power wirelessly to an external device via the coil, and a control circuit electrically connected to the fan, the temperature sensor, and the wireless charging circuit. The control circuit may be configured to receive a signal from the external device, receive data related to a temperature of the coil from the temperature sensor, and control the fan at least partially on the basis of at least one of the signal and the data.
Abstract:
One or more disclosed embodiments relate to a wireless charging transmitter and a wireless power transfer method. The wireless charging transmitter includes a first charging pad including a first wireless power circuit, a second charging pad including a second wireless power circuit, and a controller configured to, in response to detection of a first electronic device being placed on the first charging pad, transfer power at a first designated wireless power level via the first wireless power circuit, in response to detection of a second electronic device being placed on the second charging pad, transmit a first command for decreasing power transferred to the first electronic device, and transfer, upon receipt of a first request for power at a second designated wireless power level from the first electronic device in response to the first command, the power at the second designated wireless power level via the first and second wireless power circuits. The disclosure may further include other various embodiments.
Abstract:
An electronic device is provided. The electronic device includes a coil unit, a power transmission circuit electrically connected to the coil unit, and a control circuit configured to wirelessly transmit power using the coil unit, and the coil unit may include a first coil. The first coil may include a first layer wound in a first shape by a first number of turns, and a second layer extending from the first layer and wound in a second shape by a second number of turns, and the second layer may be disposed above the first layer to overlap the first layer.