Abstract:
The present invention relates to a method and an apparatus for logging a radio resource control (RRC) failure of user equipment (UE) and receiving the log. According to one embodiment of the present invention, a method for logging an RRC failure of UE may comprise the steps of: attempting random access; if the failure of random access is sensed, logging information on the failure; and if the success of random access is sensed, transmitting information on the failure logged before the success to a connected base station. According to one embodiment of the present invention, an apparatus and a method which effectively log a channel state or a connection failure can be provided.
Abstract:
A method and apparatus for receiving a power headroom (PH) report by a base station in a mobile communication system supporting carrier aggregation are provided. The method includes receiving an extended PH report (PHR) including respective PHs for multiple activated serving cells and respective indicators corresponding to the respective PHs through one of the multiple serving cells, and checking each indicator to determine whether a corresponding PH is calculated based on a real transmission or a reference format. It is determined that the corresponding PH is calculated based on the real transmission, if the each indicator is set to “0”, and it is determined that the corresponding PH is calculated based on the reference format, if the each indicator is set to “1”.
Abstract:
A method and user equipment (UE) for obtaining power headroom information in a communication system are provided. The method includes acquiring information for a path loss reference, wherein the information for the path loss reference indicates whether the UE applies as the path loss reference either a downlink of a primary cell or a downlink of a secondary cell (SCell), triggering a power headroom report (PHR) if a prohibitPHR-Timer expires and a path loss is changed more than a threshold for at least one activated cell which is used as the path loss reference, and obtaining power headroom information for each activated cell, if extended PHR is used and an uplink resource is allocated for new transmission.
Abstract:
A method and apparatus for transmitting a power headroom (PH) report by a terminal in a mobile communication system supporting carrier aggregation are provided. The method includes calculating respective PHs for multiple activated serving cells based on a real transmission or a reference format, setting respective indicators for the PHs, wherein each indicator indicates that a corresponding PH is calculated based on the real transmission or the reference format, and transmitting, to a base station, an extended PH report including the PHs and the indicators on one of the multiple activated serving cells.
Abstract:
A method and an apparatus for efficiently transmitting or reporting a Power Headroom Report (PHR) of a User Equipment (UE) are provided. The method of transmitting the PHR of the UE in a mobile communication system includes configuring an extended PHR including an indicator corresponding to a variation factor of a maximum transmission power of the UE, and transmitting the extended PHR from the UE to a Base Station (BS). The BS may be notified of a maximum transmission power of the UE and a variation factor corresponding to the maximum transmission power in order to enable efficient scheduling.
Abstract:
To solve the above-mentioned problem, the method for transmitting and receiving a signal by user equipment (UE) through one or more cells, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, a first message indicating whether one or more cells usable by the UE are enabled; determining which cells to enable or disable on the basis of the first message; and enabling or disabling the selected cells. According to the embodiment of the present specification, by aggregating carriers amongst different base stations, a possibility for the UE to transmit and receive high-speed data through carrier aggregation can increase.
Abstract:
The present invention relates to a method and an apparatus for transmitting/receiving data, and a method for a user equipment transmitting data, according to one embodiment of the present invention, comprises: a step of determining conditions for determining whether a condition for transmitting short data is satisfied, when data to be transmitted is generated; and a step of including the data to be transmitted in a radio resource control (RRC) connection setup completion message and transmitting same, when the condition for transmitting the short data is satisfied. According to one embodiment of the present invention, the problem of network overload can be prevented by reducing signaling overhead when processing small packets, which are generated intermittently, in the mobile communication system, and an apparatus and a method for enhancing battery performance in the user equipment can be effectively provided.
Abstract:
A method and an apparatus for efficiently reporting user equipment (UE) are provided. A method of transmitting Power Headroom Report (PHR) of UE in a mobile communication system, includes configuring an evolved PHR including an indicator with respect of a variation factor of maximum transmission power of the UE, and transmitting the evolved PHR to an eNB. An eNB may know maximum transmission power of an UE and a variation factor thereof to enable efficient scheduling.
Abstract:
A method, performed by a user equipment (UE), of transmitting and receiving signals in a wireless communication system, according to an embodiment, includes receiving a logical channel release request from a next-generation node B (gNB), determining a logical channel to release, an operation mode of the logical channel to release, and whether a packet data convergence protocol (PDCP) layer apparatus connected to the logical channel is re-established, based on the logical channel release request, and performing PDCP data recovery based on the determination result.
Abstract:
The present disclosure relates to converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method according to disclosed aspects includes receiving a first control message including a first random access response window for a first cell group, receiving a second control message for adding a second cell group, including information on a second random access response window size for the second cell group, transmitting, on a cell of the second cell group, a random access preamble, and monitoring, on the cell of the second cell group, a random access response based on the second random access response window size for the second cell group.