Abstract:
A downhole tool may include a voltage multiplier within a housing. The voltage multiplier may transform input power to the downhole tool from a first voltage to a second voltage higher than the first. The downhole tool may also include multiple shielding rings surrounding at least the voltage multiplier to reduce electric field stresses within the downhole tool. Additionally, the downhole tool may include an insulator located between the shielding rings and the housing.
Abstract:
An ion source includes a cathode emitting primary electrons, a cathode grid downstream of the cathode, a reflector electrode downstream of the cathode grid, a reflector grid radially inward of the reflector electrode, and an extractor electrode downstream of the reflector electrode. The cathode and the cathode grid have a voltage difference such that the electric field accelerates the primary electrons on a trajectory toward the extractor electrode. The reflector grid and the extractor electrode have a voltage difference such that the electric field repels the primary electrons on a trajectory away from the extractor electrode and toward the reflector electrode. The cathode and reflector electrode have a voltage difference such that some primary electrons strike the reflector electrode, creating secondary electrons. The reflector grid has a positive potential such that the electric field attracts the primary and secondary electrons into the ionization region where they interact with ionizable gas.
Abstract:
An ion source includes a cathode emitting primary electrons, a cathode grid downstream of the cathode, a reflector electrode downstream of the cathode grid, a reflector grid radially inward of the reflector electrode, and an extractor electrode downstream of the reflector electrode. The cathode and the cathode grid have a voltage difference such that the electric field accelerates the primary electrons on a trajectory toward the extractor electrode. The reflector grid and the extractor electrode have a voltage difference such that the electric field repels the primary electrons on a trajectory away from the extractor electrode and toward the reflector electrode. The cathode and reflector electrode have a voltage difference such that some primary electrons strike the reflector electrode, creating secondary electrons. The reflector grid has a positive potential such that the electric field attracts the primary and secondary electrons into the ionization region where they interact with ionizable gas.
Abstract:
An ion source includes a cathode to emit electrons, a cathode grid downstream of the cathode, a reflector electrode downstream of the cathode grid, reflector grid radially inward of the reflector electrode, and an extractor electrode downstream of the reflector electrode, the extractor electrode and cathode grid defining an ionization region therebetween. The cathode and the cathode grid have a first voltage difference such the electrons are accelerated through the cathode grid and into the ionization region on a trajectory toward the extractor electrode. The reflector grid and the extractor electrode have a second voltage difference less than the first voltage difference such that the electrons slow as they near the extractor electrode and are repelled on a trajectory toward the reflector electrode. The reflector electrode has a negative potential such that the electrons are repelled away from the reflector electrode and into the ionization region.
Abstract:
A method for operating a pulsed neutron generator including an ionizer with an electron emitting cathode and a grid wherein the cathode and grid are disposed in a sealed chamber. At least one of the following is applicable to the ionizer; a distance between the cathode and the grid, a cathode current and/or a potential on the grid are selected such that the ionizer operates at most about one-half the space charge limited current for a grid current selected to provide a predetermined amount of neutron production.