Abstract:
Various embodiments may be generally directed to a data storage device with at least a magnetic element having a magnetic stack positioned adjacent to and separated from at least one side shield on an air bearing surface (ABS). The side shield can be configured with a predetermined anisotropy variation along a down-track direction.
Abstract:
A data reader generally capable of sensing data bits may be configured at least with a magnetic stack that has free and fixed magnetization structures atop a magnetic seed layer. A bottom shield may be positioned contactingly adjacent the magnetic stack opposite a top shield with the bottom shield having a fixed pinning magnetization set to a predetermined magnetic orientation.
Abstract:
Various embodiments may be generally directed to a data storage device with at least a magnetic element having a magnetic stack positioned adjacent to and separated from at least one side shield on an air bearing surface (ABS). The side shield can be configured with a predetermined anisotropy variation along a down-track direction.
Abstract:
An apparatus includes a sensor stack, first and second shields positioned on opposite sides of the sensor stack, and a first shield stabilization structure adjacent to the first shield and applying a bias magnetic field to the first shield. A second shield stabilization structure can be positioned adjacent to the second shield.
Abstract:
Implementations described and claimed herein provide a system comprising an external magnetic field generator, wherein the external field magnetic field generator is configured to rock an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure.
Abstract:
A reader stack, such as for a magnetic storage device, the stack having a top synthetic antiferromagnetic (SAF) layer, a magnetic capping layer adjacent to the top SAF layer, an RKKY coupling layer adjacent to the magnetic capping layer opposite the top SAF layer, and a free layer adjacent to the RKKY coupling layer opposite the magnetic capping layer. Also included is a method for biasing a free layer in a reader stack by providing an exchange coupling between the free layer and a top synthetic antiferromagnetic (SAF) layer using a layer having RKKY coupling property positioned between the free layer and the top SAF layer and a magnetic capping layer between the SAF layer and the layer having RKKY coupling property.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap :layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
A magnetoresistive (MR) sensor including a synthetic antiferromagnetic (SAF) structure that is magnetically coupled to a side shield element. The SAF structure includes at least one magnetic amorphous layer that is an alloy of a ferromagnetic material and a refractory material. The amorphous magnetic layer may be in contact with a non-magnetic layer and antiferromagnetically coupled to a layer in contact with an opposite surface of the non-magnetic layer.
Abstract:
Implementations described and claimed herein provide a system comprising an external magnetic field generator, wherein the external field magnetic field generator is configured to rock an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure.
Abstract:
Implementations disclosed herein provide a method comprising rocking an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure, wherein an angular amplitude of rocking the effective annealing magnetic field between a first positive angle and a second negative angle gradually decreases towards the desired orientation of pinning in the AFM/PL structure.