Abstract:
A circuit board in which damage to an electrode is reduced or a light-emitting device in which damage to an electrode is reduced is manufactured. A method for manufacturing the circuit board or the light-emitting device includes the following steps: preparing a processing member including a circuit and a terminal electrode over a first substrate, a separation layer over the terminal electrode, a bonding layer over the separation layer, and a second substrate over the bonding layer; forming a groove in the processing member using a blade capable of cutting processing by being rotated; and removing part of the separation layer, part of the bonding layer, and part of the second substrate to expose part of the terminal electrode.
Abstract:
A sealed structure with high sealing capability, in which a pair of substrates is attached to each other with a glass layer is provided. The sealed structure has a first and second substrates, a first surface of the first substrate facing a first surface of the second substrate, and the glass layer which is in contact with the first and second substrates, defines a space between the first and second substrates, and is provided along the periphery of the first surface of the first substrate. The first substrate has a corner portion. The area of the first surface of the first substrate is smaller than or equal to that of the first surface of the second substrate. In at least one of respective welded regions between the glass layer and the first or second substrate, the width of the corner portion is larger than that of the side portion.
Abstract:
A display panel includes a plurality of light-emitting elements. Light emitted from a first light-emitting element has a CIE 1931 chromaticity coordinate x of greater than 0.680 and less than or equal to 0.720 and a CIE 1931 chromaticity coordinate y of greater than or equal to 0.260 and less than or equal to 0.320. Light emitted from a second light-emitting element has a CIE 1931 chromaticity coordinate x of greater than or equal to 0.130 and less than or equal to 0.250 and a CIE 1931 chromaticity coordinate y of greater than 0.710 and less than or equal to 0.810. Light emitted from a third light-emitting element has a CIE 1931 chromaticity coordinate x of greater than or equal to 0.120 and less than or equal to 0.170 and a CIE 1931 chromaticity coordinate y of greater than or equal to 0.020 and less than 0.060.
Abstract:
A light-emitting device in which deterioration of an organic EL element due to impurities such as moisture or oxygen is suppressed is provided. The light-emitting device includes a first substrate and a second substrate facing each other, a light-emitting element provided over the first substrate, a first sealant provided so as to surround the light-emitting element, and a second sealant provided so as to surround the first sealant. One of the first sealant and the second sealant is a glass layer and the other is a resin layer. A dry agent is provided in a first space surrounded by the first sealant, the second sealant, the first substrate, and the second substrate, or in the resin layer. The light-emitting element is included in a second space surrounded by the first sealant, the first substrate, and the second substrate.
Abstract:
Provided is a device in which heat conduction from a sealant to a functional element is suppressed and whose bezel is slim. The sealing structure includes a first substrate, a second substrate whose surface over which a sealed component is provided faces the first substrate, and a frame-like sealant which seals a space between the first substrate and the second substrate with the first substrate and the second substrate. The second substrate includes a groove portion between the sealant and the sealed component. The groove portion is in a vacuum or includes a substance whose heat conductivity is lower than that of the second substrate.
Abstract:
A sealed structure with high sealing capability, in which a pair of substrates is attached to each other with a glass layer is provided. The sealed structure has a first and second substrates, a first surface of the first substrate facing a first surface of the second substrate, and the glass layer which is in contact with the first and second substrates, defines a space between the first and second substrates, and is provided along the periphery of the first surface of the first substrate. The first substrate has a corner portion. The area of the first surface of the first substrate is smaller than or equal to that of the first surface of the second substrate. In at least one of respective welded regions between the glass layer and the first or second substrate, the width of the corner portion is larger than that of the side portion.
Abstract:
A light-emitting device which is thin and lightweight and has high flexibility, impact resistance, and reliability is provided. Further, a light-emitting device which is thin and lightweight and has high flexibility, impact resistance, and hermeticity is provided. In the light-emitting device in which a light-emitting region including a transistor and a light-emitting element is sealed between a first flexible substrate and a second flexible substrate, an opening is provided in the second flexible substrate around a region overlapping with the light-emitting region, the opening is filled with frit glass containing low-melting glass and bonding the first flexible substrate and the second flexible substrate, and the fit glass is provided so as to be in contact with an insulating layer provided over the first flexible substrate. The second flexible substrate may include an opening in a region overlapping with the light-emitting region.
Abstract:
A sealing structure with high air-tightness and an organic electroluminescence device with high air-tightness are provided regardless of a pattern of a first metal layer overlapping with glass frit. A second metal layer is provided in a region where a common power supply line overlaps with the glass frit. Since laser light is absorbed or reflected by the second metal layer, the glass frit can be uniformly heated. Therefore, an object to be sealed can be sealed with a low-melting-point glass in which a crack is not easily generated.
Abstract:
A sealed body in which sealing is uniformly performed is provided. A light-emitting module in which sealing is uniformly performed is provided. A method of manufacturing the sealed body in which sealing is uniformly performed is provided. The sealed body comprises a first substrate alternately provided with a high-reflectivity region with respect to the energy ray and a low-reflectivity region with respect to the energy ray so as to overlap with a sealant surrounding a sealed object, and a second substrate capable of transmitting the energy ray. The sealed object is sealed between the first substrate and the second substrate by heating the sealant with irradiation with the energy ray through the second substrate.