Abstract:
An apparatus includes a radio-frequency (RF) receiver for receiving RF signals. The RF receiver includes a plurality of modulation signal detectors (MSDs) to generate a plurality of detection signals when a plurality of RF signals modulated using a plurality of modulation schemes are detected. The RF receiver further includes a controller to cause reception of the plurality of RF signals in response to the plurality of detection signals.
Abstract:
A system for automatically detecting the PHY mode based on the incoming preamble is disclosed. The system includes a multimode demodulator, which includes a preamble detector and a demodulator. The preamble detector is used to determine when the preamble has been received and the PHY mode being used by the sending node. An indication of the PHY mode is supplied to the demodulator, which then decides the incoming bit stream in accordance with the detected PHY mode. In some embodiments, one demodulator, capable of decoding the bit stream in accordance with a plurality of PHY modes is employed. In other embodiments, the system includes a plurality of demodulators, where each is dedicated to one PHY mode.
Abstract:
A method for operating a communications system includes transmitting a preamble sequence including a plurality of tones. Each tone of the plurality of tones has a first characteristic and a second characteristic. The first characteristic of each of the tones of the plurality of tones has a predetermined relative relationship to the first characteristic of each of the other tones of the plurality of tones and the second characteristic of each of the tones of the plurality of tones has a predetermined relative relationship to the second characteristic of each of the other tones of the plurality of tones. The first and second characteristics may include relative power and relative phase.
Abstract:
A system for automatically detecting the PHY mode based on the incoming preamble is disclosed. The system includes a multimode demodulator, which includes a preamble detector and a demodulator. The preamble detector is used to determine when the preamble has been received and the PHY mode being used by the sending node. An indication of the PHY mode is supplied to the demodulator, which then decides the incoming bit stream in accordance with the detected PHY mode. In some embodiments, one demodulator, capable of decoding the bit stream in accordance with a plurality of PHY modes is employed. In other embodiments, the system includes a plurality of demodulators, where each is dedicated to one PHY mode.
Abstract:
An apparatus includes a radio frequency (RF) receiver to receive packets. The RF receiver includes first and second synchronization field detectors (SFDs). The first and second SFDs detect synchronization headers generated using first and second physical layer (PHY) modes, respectively.
Abstract:
An apparatus includes a radio frequency (RF) receiver having a multi-bit observation interval. The RF receiver includes a Coordinate Rotation Digital Computer (Cordic) circuit to receive a complex signal derived from RF signals and to generate a phase signal. The RF receiver further includes a timing correlator and frequency offset estimator coupled to receive data derived from a frequency signal derived from the phase signal. The RF receiver in addition includes a Viterbi decoder coupled to provide decoded data derived from the frequency signal.
Abstract:
A receiver includes first, second, and third signal processors and a controller. The first signal processor provides a first signal in response to detecting a first attribute of a received signal. The second signal processor provides a second signal in response to detecting a second attribute of the received signal. The third signal processor provides a third signal in response to detecting a third attribute of the received signal and provides packet data. The controller enables the first signal processor in response to a receive enable signal, controls the third signal processor to provide the packet data in response to receiving the first signal and the third signal, and initializes the first signal processor and the third signal processor in response to receiving the first signal and the second signal.
Abstract:
A receiver includes an analog receiver and a digital processor. The analog receiver has an input for receiving a radio frequency (RF) signal, and an output for providing a digital intermediate frequency signal. The digital processor has an input for receiving the digital intermediate frequency signal, and an output for providing digital symbols. The digital processor measures peak-to-peak frequency deviation of the digital intermediate frequency signal, and performs a digital signal processing function on the digital intermediate frequency signal to provide the digital symbols based on the peak-to-peak frequency deviation so measured.
Abstract:
A wireless network device configured to monitor multiple channels for clear channel assessment (CCA) is disclosed. The receiver circuit of the network device comprises at least one CCA block, which is used to indicated whether a particular channel is clear. In certain embodiments, the network device checks each channel sequentially, and if both channels are free, transmits at least one packet. The at least one packet may include a MODE SWITCH packet and a second packet sent using the new PHY mode. The network device may also have multiple CCA blocks. In this scenario, the channels may be checked concurrently, and if both channels are free, the network device transmits at least one packet. Alternatively, the network device monitors multiple channels concurrently and selected one of the channels on which to transmit a preferred PHY mode, thereby avoiding the need for a MODE SWITCH packet.
Abstract:
A system and method for detecting the preamble of a wireless packet is disclosed. The system utilizes one or more received fragments as inputs to a correlator, forming correlator content inside the correlator memory. After every sample from the received fragment is provided to the correlator, the correlator then compares the correlator content to a known pattern pre-programmed as a set of correlation coefficients. The correlation coefficients may not align with the correlator content because the symbol boundaries are not known a-priori. By cyclic rotation of the correlation coefficients relative to the correlator content, or cyclic rotation of the correlator content relative to the known correlation coefficients, a match with one or more preamble symbols may be found. This technique may be used to reduce power during the preamble detection process. Alternatively, this technique can also be used for antenna diversity, multi PHY and multichannel applications.