Abstract:
A rapidly installable photovoltaic mounting system that can be manually snapped onto a first photovoltaic module and then lowered onto a trapezoidal metal roof to serve as a base for receiving a second photovoltaic module thereon.
Abstract:
Photovoltaic mounting systems and coupling assemblies for mounting photovoltaic modules are provided. The mounting systems may include short extruded base members that are mounted onto the supporting surface at approximate locations on the supporting surface, and coupling assemblies that may slide along the length of the base members during installation and be locked at particular positions on the length of the base members. The coupling assemblies may be coupled to connectors that in turn couple to two photovoltaic modules. In operation, the installer may first determine approximate locations on which to mount the base members and mount all required base members, and then, place the coupling assemblies at desired locations, lock the coupling assemblies at the desired locations, position the photovoltaic modules in the connectors of the coupling assemblies, and move to the next set of coupling assemblies.
Abstract:
A two-piece rooftop photovoltaic mounting system. A fixed base portion is attached directly to a roof surface via a lag bolt or other mechanical fastener. A movable portion is attached to and pivots about the base portion providing freedom of movement radially and axially with respect to the base portion. A photovoltaic module coupler is attached to the movable portion to support at least two photovoltaic modules at a location dictated by positioning of the movable portion. A locking nut locks the movable portion to the base portion at the desired location. A sheet of sealant material under the base portion helps prevent ingress of water into the roof surface via the lag bolt.
Abstract:
Systems and methods for assembling and wiring photovoltaic arrays are provided. The wiring systems can include retractable wires included in photovoltaic modules that may be extended during installation of photovoltaic modules in the array to connect to wires of adjacent photovoltaic modules, which can retract into a tightened position under the array as the installation is completed. The wires may be made retractable by wire retraction mechanisms mounted to a frame of the photovoltaic module, which maintain a desired tension on the wires of the photovoltaic module. The wire retraction mechanism may include springs that urge components connected to the wire to rotate a particular direction so as to maintain tension on the wire. The wiring systems may also have wire guides to keep the wires accessible for installation and adjustment.
Abstract:
A photovoltaic (PV) mounting hardware support system having a base portion. A foot has an elongated body adapted to connect to at least one PV module frame mounting component. A latch is located between the foot and the base portion and comprising first and second flexible flanges adapted to extend into fixed connection with the top portion of base portion. A plunger having first and second extensions, the plunger is located between the latch and the base portion and moveable from a first position to a second position. In the first position of the plunger, the first and second flexible flanges of the latch are not in fixed connection with the base portion. In the second position of the plunger, the first and second extensions of the plunger respectively apply forces to the first and second flexible flanges such that the first and second flexible flanges are placed into fixed connection with the base portion.
Abstract:
A two-piece rooftop photovoltaic mounting system. A fixed base portion is attached directly to a roof surface via a lag bolt or other mechanical fastener. A movable portion is attached to and pivots about the base portion providing freedom of movement radially and axially with respect to the base portion. A photovoltaic module coupler is attached to the movable portion to support at least two photovoltaic modules at a location dictated by positioning of the movable portion. A locking nut locks the movable portion to the base portion at the desired location. A sheet of sealant material under the base portion helps prevent ingress of water into the roof surface via the lag bolt.
Abstract:
A photovoltaic (PV) mounting system having a base portion with a plurality of rails. The system includes a spring clip unit having a foot configured to hold a PV module coupling device and arranged to slide on one of the plurality of rails. A first spring clip is moveable on the foot from a first position in which the first spring clip is disengaged with the rail to allow the foot to move freely along the rail, to a second position in which the first spring clip engages the rail to attach the foot to the rail. A second spring clip is held by the foot and is forcibly engaged with the rail when the first spring clip is moved to the second position to help lock the foot.
Abstract:
A connector for attaching first and second photovoltaic modules to a mounting rail, with a lower body portion that rotates to lock into a mounting rail groove and an upper body portion with a hook that is lowered towards the lower body portion to grasp onto the first photovoltaic module and a key that receives the second photovoltaic module slidably-connected thereon.
Abstract:
A field-deployable photovoltaic power system having solar modules and associated electronics that are stored in a standard shipping container and are manually deployed to form an array above the shipping container, with the shipping container providing the structural base for the photovoltaic array disposed thereabove.