Abstract:
A system comprises a milking box, a robotic attacher, a sensor, and a controller. The milking box has a stall to accommodate a dairy livestock. The stall comprises a first exit gate on a first side of the stall leading to a first sorting region and a second exit gate on a second side of the stall leading to a second sorting region. The robotic attacher extends from the rear between the hind legs of the dairy livestock, move in at least one direction along the x-axis, y-axis, and z-axis, and attach milking equipment to the dairy livestock. The sensor identifies the dairy livestock within the milking box stall. The controller selects and opens the first exit gate or the second exit gate based at least in part upon the identity of the dairy livestock in order to direct the first dairy livestock into either the first sorting region or the second sorting region.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock, comprises receiving a trigger signal indicating that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track, the track having a carriage carrying a robotic arm mounted thereto. The method continues by communicating a first signal to a first actuator coupled to the track and the carriage, the first signal causing operation of the first actuator such that the carriage moves along the track in relation to the rotary milking platform. The method concludes by communicating one or more additional signals to one or more actuators of the robotic arm, the one or more additional signals causing operation of the one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
A system includes a robotic arm on which at least one camera is attached. It further includes a memory and a controller communicatively coupled to the memory. The memory stores historical information associated with a dairy livestock. The historical information include a previously-determined location of a teat of the dairy livestock. The controller moves the camera on the robotic arm toward the previously-determined location of the teat. The camera generates an image of the teat of the dairy livestock from a position to which it is moved, and the controller determines a current location of the teat of the dairy livestock based at least in part on the image.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock includes determining that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track that has a carriage carrying a robotic arm. The method continues by communicating a first signal that causes operation of a first actuator such that the carriage moves along the track in relation to the rotary milking platform and independent of any physical coupling between the carriage and the rotary milking platform and in a direction corresponding to a direction of rotation of the rotary milking platform. The method concludes by communicating one or more additional signals that causes operation of one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
A system comprises a milking box, a robotic attacher, a sensor, and a controller. The milking box has a stall to accommodate a dairy livestock. The stall comprises a first exit gate on a first side of the stall leading to a first sorting region and a second exit gate on a second side of the stall leading to a second sorting region. The robotic attacher extends from the rear between the hind legs of the dairy livestock. The sensor identifies the dairy livestock within the milking box stall. The controller selects and opens the first exit gate or the second exit gate based at least in part upon the identity of the dairy livestock in order to direct the first dairy livestock into either the first sorting region or the second sorting region.
Abstract:
A system for operating a robotic arm, comprises a controller and a robotic arm. The controller accesses an image of the rear of dairy livestock located in a stall of a rotary milking platform and, in conjunction with the stall of the rotary milking platform in which a dairy livestock is located moving into an area adjacent a robotic arm, determines whether a milking cluster is attached to the dairy livestock based at least in part upon the image. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A system for operating a robotic arm, comprises a camera, a controller and a robotic arm. The camera captures an image of a rear of a dairy livestock located in a stall of a rotary milking platform. The controller receives the image and in conjunction with the stall of the rotary milking platform in which a dairy livestock is located moving into an area adjacent a robotic arm, determines whether a milking cluster is attached to the dairy livestock based at least in part upon the image. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A spray tool coupled to a robotic arm that extends between the legs of dairy livestock, comprises a linear member and a plurality of spray nozzles. The linear member rotates about an axis that is perpendicular to the robotic arm, and has a perimeter that lies within an outer perimeter of the robotic arm when the robotic arm extends between the legs of a dairy livestock. The plurality of spray nozzles are coupled to the linear member.
Abstract:
A method comprises positioning a robotic attacher under a dairy livestock located in a milking stall, wherein the robotic attacher comprises a nozzle. The method continues by rotating the robotic attacher such that the nozzle is positioned generally on the top of the robotic attacher and performing a spraying operation using the nozzle. The method concludes by retracting the robotic attacher from under the dairy livestock.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock, comprises moving a carriage along a track. The carriage carries a robotic arm and the track is adjacent to a stall of a rotary milking platform housing a dairy livestock. The robotic arm comprises a first member pivotally attached to the carriage, a second member pivotally attached to the first member, and a spray tool member pivotally attached to the second member. The method continues by extending the robotic arm between the hind legs of the dairy livestock while the rotary milking platform rotates such that a spray tool of the spray tool member is located at a spray position from which the spray tool may discharge disinfectant to the teats of the dairy livestock.