THROUGH TRENCH ISOLATION FOR DIE
    21.
    发明申请

    公开(公告)号:US20220384252A1

    公开(公告)日:2022-12-01

    申请号:US17710139

    申请日:2022-03-31

    Abstract: A device includes a die with a protective overcoat and a substrate, the substrate comprising a first region and a second region that are spaced apart. The device also includes an isolation dielectric between the protective overcoat and the die. A pre-metal dielectric (PMD) barrier is between the isolation dielectric and the substrate, the PMD barrier having a first region that contacts the first region of the substrate and a second region that contacts the second region of the substrate, the first region and the second region of the PMD barrier being spaced apart. A through trench filled with a polymer dielectric extends between the first region and the second region of the substrate, and between the first region and the second region of the PMD barrier to contact the isolation dielectric.

    Methods and apparatus for digital material deposition onto semiconductor wafers

    公开(公告)号:US11487206B2

    公开(公告)日:2022-11-01

    申请号:US16729919

    申请日:2019-12-30

    Abstract: A microelectronic device is formed by dispensing discrete amounts of a mixture of photoresist resin and solvents from droplet-on-demand sites onto a wafer to form a first photoresist sublayer, while the wafer is at a first temperature which allows the photoresist resin to attain less than 10 percent thickness non-uniformity. The wafer moves under the droplet-on-demand sites in a first direction to form the first photoresist sublayer. A portion of the solvents in the first photoresist sublayer is removed. A second photoresist sublayer is formed on the first photoresist sublayer using the droplet-on-demand sites while the wafer is at a second temperature to attain less than 10 percent thickness non-uniformity in the combined first and second photoresist sublayers. The wafer moves under the droplet-on-demand sites in a second direction for the second photoresist sublayer, opposite from the first direction.

    Aging compensation of a ferroelectric piezoelectric shock sensor

    公开(公告)号:US11320453B2

    公开(公告)日:2022-05-03

    申请号:US16856488

    申请日:2020-04-23

    Abstract: A method includes measuring a first signal from a set of pyroelectric devices at a first temperature and measuring a second signal from a set of piezoelectric devices at a first acceleration. The method also includes measuring a third signal from the set of pyroelectric devices at a second temperature and measuring a fourth signal from the set of piezoelectric devices at a second acceleration. The method further includes adjusting a piezoelectric calibration using the first, second, third, and fourth signals.

    METHODS AND APPARATUS FOR DIGITAL MATERIAL DEPOSITION ONTO SEMICONDUCTOR WAFERS

    公开(公告)号:US20210200094A1

    公开(公告)日:2021-07-01

    申请号:US16729919

    申请日:2019-12-30

    Abstract: A microelectronic device is formed by dispensing discrete amounts of a mixture of photoresist resin and solvents from droplet-on-demand sites onto a wafer to form a first photoresist sublayer, while the wafer is at a first temperature which allows the photoresist resin to attain less than 10 percent thickness non-uniformity. The wafer moves under the droplet-on-demand sites in a first direction to form the first photoresist sublayer. A portion of the solvents in the first photoresist sublayer is removed. A second photoresist sublayer is formed on the first photoresist sublayer using the droplet-on-demand sites while the wafer is at a second temperature to attain less than 10 percent thickness non-uniformity in the combined first and second photoresist sublayers. The wafer moves under the droplet-on-demand sites in a second direction for the second photoresist sublayer, opposite from the first direction.

Patent Agency Ranking