Abstract:
A method comprises computing a metric based on the accelerometer signal to remove an acceleration due to gravity. A bandwidth of a gyroscope filter is set based on the accelerometer signal and the computed metric. The gyroscope filter uses a low-pass filter to filter a signal from the gyroscope.
Abstract:
Systems and methods for building, transmitting, and receiving frame structures in power line communications (PLC) are described. Various techniques described herein provide a preamble design using one or more symbols based on a chirp signal that yields a low peak-to-average power ratio (PAPR). According to some techniques, the preamble may be constructed with one or more different types and/or number of symbols configured to identify a PLC domain operating in close physical proximity to another PLC domain. According to other techniques, one or more preamble symbols may be interspersed within a header portion of a PLC frame to facilitate estimation of a frame boundary and/or sampling frequency offset, for example, in the presence of impulsive noise. According to yet other techniques, a PLC detector may be capable of receiving and decoding two or more types of PLC frames (e.g., using different PLC standards).
Abstract:
A PLC network system and method operative with OFDM for generating MIMO frames with suitable preamble portions configured to provide backward compatibility with legacy PLC devices and facilitate different receiver tasks such as frame detection and symbol timing, channel estimation and automatic gain control (AGC), including robust preamble detection in the presence of impulsive noise and frequency-selective channels of the PLC network. A PLC device may include a delayed correlation detector and a cross-correlation detector operating in concert to facilitate preamble detection in one implementation.
Abstract:
An integrated circuit includes a bit slicing circuit with a processing circuit. The processing circuit receives discrete frequency power estimates based on an S-FSK waveform received by an S-FSK receiver associated with the bit slicing circuit. The discrete frequency power estimates are representative of digital logic levels in a series of data frames modulated using S-FSK to form the S-FSK waveform. Each data frame including at least one word. Each word includes bit periods. The processing circuit receives SNR parameters that represent a dynamic SNR for the respective discrete frequency power estimates in relation to the series of data frames. The processing circuit selects a bit slicing technique from a set of available bit slicing techniques to generate data bit values for bit periods of the discrete frequency power estimates based on the SNR parameters. A method for performing bit slicing in an S-FSK receiver is also disclosed.
Abstract:
Disclosed examples include heart rate monitor systems and methods to estimate a patient heart rate or rate of another pulsed signal, in which rate hypotheses or states, are identified for a current time window according to digital sample values of the pulsed signal for a current sample time window, and a rate change value is computed for potential rate transitions between states of the current and previous time windows. Transition pair branch metric values are computed as a function of the rate change value and a frequency domain amplitude of the corresponding rate hypothesis for the current time window, and the pulsed signal rate estimate is determined according to a maximum path metric computed according to the branch metric value and a corresponding path metric value for the previous time window.
Abstract:
An integrated circuit includes a bit slicing circuit with a processing circuit. The processing circuit receives discrete frequency power estimates based on an S-FSK waveform received by an S-FSK receiver associated with the bit slicing circuit. The discrete frequency power estimates are representative of digital logic levels in a series of data frames modulated using S-FSK to form the S-FSK waveform. Each data frame including at least one word. Each word includes bit periods. The processing circuit receives SNR parameters that represent a dynamic SNR for the respective discrete frequency power estimates in relation to the series of data frames. The processing circuit selects a bit slicing technique from a set of available bit slicing techniques to generate data bit values for bit periods of the discrete frequency power estimates based on the SNR parameters. A method for performing bit slicing in an S-FSK receiver is also disclosed.
Abstract:
Methods for building, transmitting, and receiving frame structures in power line communications (PLC) are described. Various techniques described herein provide a preamble design using one or more symbols. One or more preamble symbols may be interspersed within a header portion of a PLC frame to facilitate estimation of a frame boundary and/or sampling frequency offset, for example, in the presence of impulsive noise.
Abstract:
A PLC network system and method operative with OFDM for generating MIMO frames with suitable preamble portions configured to provide backward compatibility with legacy PLC devices and facilitate different receiver tasks such as frame detection and symbol timing, channel estimation and automatic gain control (AGC), including robust preamble detection in the presence of impulsive noise and frequency-selective channels of the PLC network. A PLC device may include a delayed correlation detector and a cross-correlation detector operating in concert to facilitate preamble detection in one implementation.
Abstract:
Disclosed examples include heart rate monitor systems and methods to estimate a patient heart rate, in which a processor filters digital photoplethysmogram (PPG) sample values representing transmission or reflection of a light signal in the patient during a time window, performs motion compensation processing on the filtered values, computes a gain value for individual segments of the time window using the motion compensated values, applies the individual gain values to the motion compensated values of blocks associated with the corresponding segments, and determines a heart rate estimate value representing the patient heart rate according to the frequency content of the adjusted values.
Abstract:
In a disclosed embodiment, a method for communication in a network includes receiving, at a first device registered to the network, a physical layer (PHY) frame that includes a PHY header and a MAC header. The PHY frame may further include a MAC payload. The PHY header includes a destination address field. The method further includes comparing a network address of the first device to the destination address field to determine whether the destination address field stores a value having the same number of bits as the network address. When the comparison indicates that the value stored by the destination address field does not have the same number of bits as the network address, the method skips decoding the MAC header and the MAC payload.