Abstract:
An illumination apparatus is provided that includes a yellow phosphor converter to receive a blue laser light beam and to convert a portion of the blue laser light beam to yellow light, a dichroic mirror optically coupled to the yellow phosphor converter to receive the phosphor-emitted light beam and to filter the phosphor-emitted light beam to provide a dichroic-filtered light beam, the dichroic mirror configured to pass yellow light and to reflect at least some blue light, and a blue light source optically coupled to the dichroic mirror to provide a blue light beam, the dichroic mirror configured to reflect the blue light beam in a same direction as the dichroic-filtered light beam.
Abstract:
In described examples, a DMD includes micromirrors. A first light source generates a first beam profile illuminating a first set of micromirrors of the DMD. A second light source generates a second beam profile illuminating a second set of micromirrors of the DMD. The first and second beam profiles partially overlap on at least some micromirrors of the DMD. The first light source is source-modulated independently of the second light source for adjusting power and brightness in response to a sensed driving condition. The micromirrors of the DMD are modulated in response to the sensed driving condition.
Abstract:
A depth imaging system includes an optical image sensor, an optical beam steering system, an object identification system, and a depth measurement system. The object identification system is coupled to the optical image sensor. The object identification system is configured to identify an object in an image captured by the optical image sensor. The depth measurement system is coupled to the optical beam steering device. The depth measurement system is configured to, responsive to identification of the object by the object identification system: direct an optical signal, via the optical beam steering device, to the object, and to determine a distance to the object based on a time-of-flight of the optical signal.
Abstract:
An illumination system includes at least first and second laser illumination sources. A down converter material emits light when illuminated by one or more of the laser illumination sources. The first laser illumination source is arranged to illuminate only a first portion of the down converter material. The second laser illumination source is arranged to illuminate only a second portion of the down converter material. Control circuitry causes the first laser illumination source to adaptively vary a first intensity of illuminating the first portion of the down converter material, causes the second laser illumination source to adaptively vary a second intensity of illuminating the second portion of the down converter material, and causes the light modulator to allow a selected amount of the down converter material's emitted light to be projected from the system.
Abstract:
Described examples include a projection device having a light source. The projection device also has a spatial light modulator arranged to receive light from the light source and provide modulated light. The projection device also has projection optics arranged to receive and project the modulated light. The projection device also has a field splitting element between the spatial light modulator and the projection optics, a first portion of the field splitting element being structured to pass at least a first portion of the modulated light to the projection optics for projection at a first focal length, and a second portion of the field splitting element being structured to pass at least a second portion of the modulated light to the projection optics for projection at a second focal length.
Abstract:
Described examples include an optical apparatus having a first lens, a first optical element having a first aperture, a second lens, and a second optical element having a second aperture. The optical apparatus includes a third lens having a first portion to receive projected light from the first lens through the first aperture and to project the projected light onto a target. Also, the third lens has a second portion to receive reflected light reflected from the target and to provide the reflected light to the second lens through the second aperture.
Abstract:
In described examples, one or more devices include: a light source to generate a beam of light; and optics to generate a spot of light in response to the beam of light. A color wheel revolves in a direction of rotation about an axis, so the spot of light illuminates an area of the color wheel. The spot of light has: a first width; and a second width wider than the first width and orthogonal to the first width. The first width is aligned tangential to the direction of rotation.
Abstract:
In described examples of an automotive headlamp, a first illumination source outputs a first color light, and a second illumination source outputs a second color light different from the first color light. A digital micromirror device receives the first color light and the second color light and reflects the first color light and the second color light. A projection optics receives reflected light from the digital micromirror device and outputs a beam from the automotive headlamp having a color that is a combination of the first and second colors. A controller controls intensity and duration of the first illumination source and the second illumination source, controls a pattern on the digital micromirror device, and spectrally tunes the color of the output beam.
Abstract:
In described examples of an illumination system, the illumination system includes: at least two illumination modules to output different color light beams to an illumination path; and illumination optics corresponding to each of the at least two illumination modules to receive the light beams and to provide illumination to a programmable spatial light modulator. The programmable spatial light modulator receives the illumination and outputs patterned light to projection optics. The projection optics receive the patterned light and output the patterned light as an output beam through a lens. A controller controls the intensity and duration of light output from the at least two illumination modules and controls the pattern of the spatial light modulator. The output beam is a color formed by combining the different color light beams. The output beam is spectrally tunable.
Abstract:
A method and device for eye gaze tracking has coincident display and imaging channel with shared field of view; a pupil forming/collimating subsystem that is part of the imaging channel; and a microdisplay that is part of the imaging channel. The method and device enable simultaneous display and eye tracking by using a pond of mirrors in a micromirror array.